Skip to main content

Advertisement

Log in

Potential of exogenous cartilage proteoglycan as a new material for cartilage regeneration

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Although proteoglycan (PG) is one of the major components of cartilage matrices, its biological function is not fully elucidated.

Methods

The objectives of this study were to investigate the proliferation and differentiation of chondrocytes embedded in atelocollagen gel with exogenous cartilage PG (PG-atelocollagen gel) in vitro, and also to evaluate the repair of cartilage defects by PG-atelocollagen gel in vivo. In the in vitro study, rabbit chondrocytes were cultured in the PG-atelocollagen gel. Cell proliferation and mRNA expression levels were measured, and gels were histologically evaluated. In the in vivo study, cultured PG-atelocollagen gel containing chondrocytes were transplanted into full-thickness articular cartilage defects in rabbit knees, and evaluated macroscopically and histologically.

Results

For the in vitro study, chondrocyte proliferation in 5.0 mg/ml PG-atelocollagen gel was enhanced, and the gene expression of Col2a1 and Aggrecan were decreased. In contrast, chondrocyte proliferation in 0.1 and 1.0 mg/ml PG-atelocollagen gel was not enhanced. The gene expression of Aggrecan in 0.1 and 1.0 mg/ml PG-atelocollagen gel was increased. For the in vivo study, the histological average total score of the 0.1 mg/ml PG-atelocollagen gel was significantly better than that of the group without PG.

Conclusions

Although the appropriate concentration of PG has not been defined, this study suggests the efficacy of PG for cartilage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith GD, Knutsen G, Richardson JB (2005) A clinical review of cartilage repair techniques. J Bone Joint Surg Br 87:445–449

    Article  PubMed  CAS  Google Scholar 

  2. Borovecki F, Pecina-Slaus N, Vukicevic S (2007) Biological mechanisms of bone and cartilage remodelling—genomic perspective. Int Orthop 31:799–805

    Article  PubMed  CAS  Google Scholar 

  3. Ivkovic A, Pascher A, Hudetz D, Maticic D, Jelic M, Dickinson S, Loparic M, Haspl M, Windhager R, Pecina M (2010) Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther 17:779–789

    Article  PubMed  CAS  Google Scholar 

  4. Ivkovic A, Marijanovic I, Hudetz D, Porter RM, Pecina M, Evans CH (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci (Elite Ed) 3:923–944

    Google Scholar 

  5. Grande DA, Pitman MI, Peterson L, Menche D, Klein M (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 7:208–218

    Article  PubMed  CAS  Google Scholar 

  6. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  PubMed  CAS  Google Scholar 

  7. Peterson L, Minas T, Brittberg M, Lindahl A (2003) Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am 85:17–24

    Article  PubMed  Google Scholar 

  8. Grigolo B, Roseti L, De Franceschi L, Piacentini A, Cattini L, Manfredini M, Faccini R, Facchini A (2005) Molecular and immunohistological characterization of human cartilage. Two years following autologous cell transplantation. J Bone Joint Surg Am 87:46–57

    Article  PubMed  Google Scholar 

  9. Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47:477–486

    PubMed  CAS  Google Scholar 

  10. Yang BB, Zhang Y, Cao L, Yang BL (1998) Aggrecan and link protein affect cell adhesion to culture plates and to type II collagen. Matrix Biol 16:541–561

    Article  PubMed  CAS  Google Scholar 

  11. Funderburg FM, Markwald RR (1986) Conditioning of native substrates by chondroitin sulfate proteoglycans during cardiac mesenchymal cell migration. J Cell Biol 103:2475–2487

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Wu Y, Cao L, Lee V, Chen L, Lin Z, Kiani C, Adams ME, Yang BB (2001) Versican modulates embryonic chondrocyte morphology via the epidermal growth factor-like motifs in G3. Exp Cell Res 263:33–42

    Article  PubMed  CAS  Google Scholar 

  13. Kamiya N, Watanabe H, Habuchi H, Takagi H, Shinomura T, Shimizu K, Kimata K (2006) Versican/PG-M regulates chondrogenesis as an extracellular matrix molecule crucial for mesenchymal condensation. J Biol Chem 281:2390–2400

    Article  PubMed  CAS  Google Scholar 

  14. Watanabe H, Kimata K, Line S, Strong D, Gao LY, Kozak CA, Yamada Y (1994) Mouse cartilage matrix deficiency (cmd) caused by a 7 bp deletion in the aggrecan gene. Nat Genet 7:154–157

    Article  PubMed  CAS  Google Scholar 

  15. French MM, Smith SE, Akanbi K, Sanford T, Hecht J, Farach-Carson MC, Carson DD (1999) Expression of the heparan sulfate proteoglycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in vitro. J Cell Biol 145:1103–1115

    Article  PubMed  CAS  Google Scholar 

  16. Nishimoto S, Takagi M, Wakitani S, Nihira T, Yoshida T (2005) Effect of chondroitin sulfate and hyaluronic acid on gene expression in a three-dimensional culture of chondrocytes. J Biosci Bioeng 100:123–126

    Article  PubMed  CAS  Google Scholar 

  17. Kagita E, Ikeda M, Wakitani S, Takagi M (2010) Effect of monosaccharides composing glycosaminoglycans on type 2 collagen accumulation in a three-dimensional culture of chondrocytes. J Biosci Bioeng 109:51–54

    Article  PubMed  CAS  Google Scholar 

  18. Wu CH, Ko CS, Huang JW, Huang HJ, Chu IM (2010) Effect of exogenous glycosaminoglycans on human chondrocytes cultivated on type II collagen scaffolds. J Mater Sci Mater Med 21:725–729

    Article  PubMed  CAS  Google Scholar 

  19. French MM, Gomes RR Jr, Timpl R, Höök M, Czymmek K, Farach-Carson MC, Carson DD (2002) Chondrogenic activity of the heparan sulfate proteoglycan perlecan maps to the N-terminal domain I. J Bone Miner Res 17:48–55

    Article  PubMed  CAS  Google Scholar 

  20. French MM, Rose S, Canseco J, Athanasiou KA (2004) Chondrogenic differentiation of adult dermal fibroblasts. Ann Biomed Eng 32:50–56

    Article  PubMed  CAS  Google Scholar 

  21. Uchio Y, Ochi M, Matsusaki M, Kurioka H, Katsube K (2000) Human chondrocyte proliferation and matrix synthesis cultured in Atelocollagen® gel. J Biomed Mater Res 50:138–143

    Article  PubMed  CAS  Google Scholar 

  22. Katsube K, Ochi M, Uchio Y, Maniwa S, Matsusaki M, Tobita M, Iwasa J (2000) Repair of articular cartilage defects with cultured chondrocytes in Atelocollagen gel. Comparison with cultured chondrocytes in suspension. Arch Orthop Trauma Surg 120:121–127

    PubMed  CAS  Google Scholar 

  23. Ochi M, Uchio Y, Kawasaki K, Wakitani S, Iwasa J (2002) Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J Bone Joint Surg Br 84:571–578

    Article  PubMed  CAS  Google Scholar 

  24. Majima M, Takagaki K, Sudo S, Yoshihara S, Kudo Y, Yamagishi S (2001) Effect of proteoglycan on experimental colitis. In: Endo M, Harata S, Saito Y, Munakata A, Sasaki M, Tsuchida S (eds) New developments in glycomedicine. Elsevier Science BV, Amsterdam, pp 221–224

    Google Scholar 

  25. Wachsmuth L, Keiffer R, Juretschke HP, Raiss RX, Kimmig N, Lindhorst E (2003) In vivo contrast-enhanced micro MR-imaging of experimental osteoarthritis in the rabbit knee joint at 7.1T1. Osteoarthr Cartil 11:891–902

    Article  PubMed  Google Scholar 

  26. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76:579–592

    PubMed  CAS  Google Scholar 

  27. Tohyama H, Yasuda K, Minami A, Majima T, Iwasaki N, Muneta T, Sekiya I, Yagishita K, Takahashi S, Kurokouchi K, Uchio J, Iwasa J, Deie M, Adachi N, Sugawara K, Ochi M (2009) Atelocollagen-associated autologous chondrocyte implantation for the repair of chondral defects of the knee: a prospective multicenter clinical trial in Japan. J Orthop Sci 14:579–588

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Y, Cao L, Kiani C, Yang BL, Hu W, Yang BB (1999) Promotion of chondrocyte proliferation by versican mediated by G1 domain and EGF-like motifs. J Cell Biochem 73:445–447

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Education, Culture, Sports, Science and Technology Cooperation for innovation technology and advanced research in an urban area, the Hirosaki City Area (Proteoglycan application research project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusa Ohshika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohshika, S., Ishibashi, Y., Kon, A. et al. Potential of exogenous cartilage proteoglycan as a new material for cartilage regeneration. International Orthopaedics (SICOT) 36, 869–877 (2012). https://doi.org/10.1007/s00264-011-1335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-011-1335-2

Keywords

Navigation