Skip to main content

Advertisement

Log in

Correlation of dynamic impact testing, histopathology and visual macroscopic assessment in human osteoarthritic cartilage

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Objective

Improved staging of cartilage degeneration is required, particularly during the early stages. We correlated mechanical properties with histological and macroscopic findings.

Methods

One hundred and twenty cartilage samples were obtained during total knee arthroplasty. Two adjacent plugs were harvested—one for histological classification and one for macroscopic and biomechanical purposes. Dynamic impact testing was performed; normal stress, dissipated energy (∆E), tangent modulus and stiffness were evaluated.

Results

Samples were classified according to six categories of the ICRS histological scale. Mechanical characteristics revealing significant differences between the groups (p < 0.01) were specific damping and related absolute ∆E. A significant correlation was found between the macroscopic score and specific damping, as well as absolute and relative ∆E (p < 0.01). A strong relation was revealed between relative ∆E and cartilage thickness (p < 0.001; R 2 = 0.69).

Conclusions

Only ∆E correlated with the condition of the cartilage—the value increased with decreasing quality—and is the most suitable characteristic. This change appears substantial in initial stages of cartilage deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13(2):67–97

    Article  PubMed  CAS  Google Scholar 

  2. Hall AC, Horwitz ER, Wilkins RJ (1996) The cellular physiology of articular cartilage. Exp Physiol 81(3):535–545

    PubMed  CAS  Google Scholar 

  3. Burgin LV, Aspden RM (2007) A drop tower for controlled impact testing of biological tissues. Med Eng Phys 29(4):525–530

    Article  PubMed  Google Scholar 

  4. Aspden RM, Jeffrey JE, Burgin LV (2002) Impact loading: physiological or pathological? Osteoarthritis Cartilage 10(7):588–589

    Article  PubMed  CAS  Google Scholar 

  5. Repo RU, Finlay JB (1977) Survival of articular-cartilage after controlled impact. J Bone Joint Surg Am 59(8):1068–1076

    PubMed  CAS  Google Scholar 

  6. Burgin LV, Aspden RM (2008) Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone. J Mater Sci Mater Med 19(2):703–711

    Article  PubMed  CAS  Google Scholar 

  7. Verteramo A, Seedhom BB (2007) Effect of a single impact loading on the structure and mechanical properties of articular cartilage. J Biomech 40(16):3580–3589

    Article  PubMed  CAS  Google Scholar 

  8. Appleyard RC, Burkhardt D, Ghosh P, Read R, Cake M, Swain MV et al (2003) Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage 11(1):65–77

    Article  PubMed  CAS  Google Scholar 

  9. Oakley SP, Lassere MN, Portek I, Szomor Z, Ghosh P, Kirkham BW et al (2004) Biomechanical, histologic and macroscopic assessment of articular cartilage in a sheep model of osteoarthritis. Osteoarthritis Cartilage 12(8):667–679

    Article  PubMed  CAS  Google Scholar 

  10. Kleemann RU, Krocker D, Cedraro A, Tuischer J, Duda GN (2005) Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade). Osteoarthritis Cartilage 13(11):958–963

    Article  PubMed  CAS  Google Scholar 

  11. Young AA, Appleyard RC, Smith MM, Melrose J, Little CB (2007) Dynamic biomechanics correlate with histopathology in human tibial cartilage: a preliminary study. Clin Orthop Relat Res 462:212–220

    Article  PubMed  Google Scholar 

  12. Franz T, Hasler EM, Hagg R, Weiler C, Jakob RP, Mainil-Varlet P (2001) In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthritis Cartilage 9(6):582–592

    Article  PubMed  CAS  Google Scholar 

  13. Appleyard RC, Swain MV, Khanna S, Murrell GAC (2001) The accuracy and reliability of a novel handheld dynamic indentation probe for analysing articular cartilage. Phys Med Biol 46(2):541–550

    Article  PubMed  CAS  Google Scholar 

  14. Niederauer GG, Niederauer GM, Cullen LC, Athanasiou KA, Thomas JB, Niederauer MQ (2004) Correlation of cartilage stiffness to thickness and level of degeneration using a handheld indentation probe. Ann Biomed Eng 32(3):352–359

    Article  PubMed  Google Scholar 

  15. Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53(3):523–537

    PubMed  CAS  Google Scholar 

  16. Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E et al (2003) Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am 2(85-A Suppl):45–57

    Google Scholar 

  17. Brittberg M, Peterson L (1998) Introduction to an articular cartilage classification. ICRS Newsl 1:8

    Google Scholar 

  18. Cohen ZA, McCarthy DM, Kwak SD, Legrand P, Fogarasi F, Ciaccio EJ et al (1999) Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthritis Cartilage 7(1):95–109

    Article  PubMed  CAS  Google Scholar 

  19. Mollenhauer J, Aurich ME, Zhong Z, Muehleman C, Cole CC, Hasnah M et al (2002) Diffraction-enhanced X-ray imaging of articular cartilage. Osteoarthritis Cartilage 10(3):163–171

    Article  PubMed  CAS  Google Scholar 

  20. Nissi MJ, Toyras J, Laasanen MS, Rieppo J, Saarakkala S, Lappalainen R et al (2004) Proteoglycan and collagen sensitive MRI evaluation of normal and degenerated articular cartilage. J Orthop Res 22(3):557–564

    Article  PubMed  CAS  Google Scholar 

  21. Kuroki H, Nakagawa Y, Mori K, Kobayashi M, Yasura K, Okamoto Y et al (2008) Ultrasound properties of articular cartilage in the tibio-femoral joint in knee osteoarthritis: relation to clinical assessment (International Cartilage Repair Society grade). Arthritis Res Ther 10(4):R78

    Article  PubMed  Google Scholar 

  22. Appleyard RC, Ghosh P, Swain MV (1999) Biomechanical, histological and immunohistological studies of patellar cartilage in an ovine model of osteoarthritis induced by lateral meniscectomy. Osteoarthritis Cartilage 7(3):281–294

    Article  PubMed  CAS  Google Scholar 

  23. Varga F, Drzik M, Handl M, Chlpik J, Kos P, Filová E et al (2007) Biomechanical characterization of cartilages by a novel approach of blunt impact testing. Physiol Res 56(Suppl 1):S61–S68

    PubMed  Google Scholar 

  24. Ivkovic A, Pascher A, Hudetz D, Maticic D, Jelic M, Dickinson S et al (2010) Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther 17(6):779–789

    Article  PubMed  CAS  Google Scholar 

  25. Pecina M, Jelic M, Martinovic S, Haspl M, Vukicevic S (2002) Articular cartilage repair: the role of bone morphogenetic proteins. Int Orthop 26(3):131–136

    Article  PubMed  CAS  Google Scholar 

  26. Bae WC, Temple MM, Amiel D, Coutts RD, Niederauer GG, Sah RL (2003) Indentation testing of human cartilage: Sensitivity to articular surface degeneration. Arthritis Rheum 48(12):3382–3394

    Article  PubMed  Google Scholar 

  27. Shepherd DE, Seedhom BB (1999) Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis 58(1):27–34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff of the Institute of Pathological Anatomy for histological staining and the staff of the International Laser Centre for help with biomechanical testing. We would also like to thank the staff of the Orthopaedic Clinic where the total knee joint replacements were performed. Special thanks to the staff of the Department of Biophysics for their excellent cooperation.

Role of the funding source

This work was supported by Grants FI IM4/205 and FT TA5/020 from the Ministry of Industry of the Czech Republic.

Conflict of interest

There were no financial or personal relationships with other people or organisations that could influence our work and conclusions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kos, P., Varga, F., Handl, M. et al. Correlation of dynamic impact testing, histopathology and visual macroscopic assessment in human osteoarthritic cartilage. International Orthopaedics (SICOT) 35, 1733–1739 (2011). https://doi.org/10.1007/s00264-010-1195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-010-1195-1

Keywords

Navigation