Skip to main content
Log in

A cost analysis of treatment of tibial fracture nonunion by bone grafting or bone morphogenetic protein-7

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

The parameter of health economics in the use of any contemporary medical module plays a dominant role in decision making. A prospective nonrandomised comparative study of the direct medical costs on the first attempt of treating aseptic nonunions of tibial fractures, with either autologous-iliac-crest-bone-graft (ICBG) or bone morphogenetic protein-7 (BMP-7), is presented. Twenty-seven consecutive patients, who were successfully treated for fracture nonunions, were divided into two groups. Group 1 (n = 12) received ICBG and group 2 (n = 15) received BMP-7. All patients healed their nonunions, and the financial analysis presented represents a best-case scenario. Three out of 12 of the ICBG group required revision surgery while just one out of 15 required it in the BMP-7 group. Average hospital stay was 10.66 vs. 8.66 days, time-to-union 6.9 vs. 5.5 months, hospitals costs £2,133.6 vs. £1,733.33, and theatre costs were £2,413.3 vs. £906.67 for the ICBG and BMP-7 groups, respectively. The BMP-7 cost was £3002.2. Fixation-implant was £696.4 vs. £592.3, radiology £570 vs. £270, outpatient £495.8 vs. £223.33, and other costs were £451.6 vs. £566.27 for the ICBG and BMP-7 groups, respectively. The average cost of treatment with BMP-7 was 6.78% higher (P = 0.1) than with ICBG, and most of this (41.1%) was related to the actual price of the BMP-7. In addition to the satisfactory efficacy and safety of BMP-7 in comparison to the gold standard of ICBG, as documented in multiple studies, its cost effectiveness is advocated favourably in this analysis.

Résumé

La paramètre des finances joue un rôle dominant en ce qui concerne l’ usage de tout matériel médical contemporain. On présente une étude perspective, comparative et pas randomisée, du coût médical immédiat, pendant le premier effort du traitement des pseudarthroses aseptiques de tibia, avec l’ usage d’ autogreffe par la crête iliaque (ACI) où`a l’ usage de protéines inductrices osseuses (BMP-7). Vingt-sept patients successifs qui ont été guéris avec succès par des fractures de pseudarthroses ont été divisés a deux groupes. Pour le premier groupe (12 patients) a été utilisé d’autogreffe par la crête iliaque. Pour le deuxième groupe (15 patients) a été utilisé BMP-7. Toutes ces pseudarthroses ont été guéries avec succès et l’ analyse des finances présentée, prouve le meilleur scénario possible. Trois sur douze des patients du groupe ACI et seulement un sur quinze du groupe BMP-7 ont eu besoin de répéter l’ opération chirurgicale. La comparaison entre le premier (ACI) et le deuxième (BMP-7) groupe a montré. La durée moyenne d’ hospitalisation était 10,66 contre 8,66 jours. La durée du traitement était 6,9 contre 5,5 mois. Les dépenses pour l’ hôpital étaient 2133,6 £ contre 1733,33 £. Les dépenses chirurgicales étaient 2413,3 £ contre 906,67 £. Le coût des BMP-7 était 3002,2 £. Le coût des matières pour la fixation était 696,4 £ contre 592,3 £. Les dépenses radiologiques étaient 570 £ contre 270 £. Les dépenses après l’opération étaient 495,8 £ contre 223,33 £. Autres dépenses médicales étaient 451,6 £ contre 566,27 £. Le coût moyen du traitement avec BMP-7 était de 6,78% plus haut (P = 0,1) et la plus grande partie de ce coût (41,1%) était relative au prix actuel de BMP-7. En dehors de l’ efficacité satisfaisante et la sûreté de BMP-7 en relation avec “le standard d’or “d’autogreffe: comme tout ça est démontré par plusieurs études, le coût de son usage est prouvé avantageux par l’ étude présente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackerman SJ, Mafilios MS, Polly DW Jr (2002) Economic evaluation of bone morphogenetic protein versus autogenous iliac crest bone graft in single-level anterior lumbar fusion: an evidence-based modeling approach. Spine 27:S94–S99

    Article  PubMed  Google Scholar 

  2. Beaver R, Brinker MR, Barrack RL (1997) An analysis of the actual cost of tibial nonunions. J La State Med Soc 149:200–206

    PubMed  CAS  Google Scholar 

  3. Bozic KJ, Rosenberg AG, Huckman RS et al (2003) Economic evaluation in orthopaedics. J Bone Joint Surg Am 85-A:129–142

    PubMed  Google Scholar 

  4. Calori GM, Albisetti W, Agus A et al (2007) Risk factors contributing to fracture non-unions. Injury 38(Suppl 2):S11–S18

    Article  PubMed  Google Scholar 

  5. Cook SD, Rueger DC (1996) Osteogenic protein-1: biology and applications. Clin Orthop Relat Res 324:29–38

    Article  PubMed  Google Scholar 

  6. Cook SD, Wolfe MW, Salkeld SL et al (1995) Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J Bone Joint Surg Am 77:734–7350

    PubMed  CAS  Google Scholar 

  7. Dahabreh Z, Dimitriou R, Giannoudis PV (2007) Health economics: a cost analysis of treatment of persistent fracture non-unions using bone morphogenetic protein-7. Injury 38:371–377

    Article  PubMed  Google Scholar 

  8. Dickinson BP, Ashley RK, Wasson KL et al (2008) Reduced morbidity and improved healing with bone morphogenic protein-2 in older patients with alveolar cleft defects. Plast Reconstr Surg 121:209–217

    Article  PubMed  CAS  Google Scholar 

  9. Dimitriou R, Dahabreh Z, Katsoulis E et al (2005) Application of recombinant BMP-7 on persistent upper and lower limb non-unions. Injury 36(Suppl 4):S51–S59

    Article  PubMed  Google Scholar 

  10. Friedlaender GE, Perry CR, Cole JD et al (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 83-A(Suppl 1):S151–S158

    PubMed  Google Scholar 

  11. Gazdag AR, Lane JM, Glaser D et al (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3:1–8

    PubMed  Google Scholar 

  12. Glassman SD, Carreon LY, Campbell MJ et al (2007) The perioperative cost of Infuse bone graft in posterolateral lumbar spine fusion. Spine J 8(3):443-448

    Google Scholar 

  13. Harwood PJ, Giannoudis PV (2005) Application of bone morphogenetic proteins in orthopaedic practice: their efficacy and side effects. Expert Opin Drug Saf 4:75–89

    Article  PubMed  CAS  Google Scholar 

  14. Heckman JD, Sarasohn-Kahn J (1997) The economics of treating tibia fractures. The cost of delayed unions. Bull Hosp Jt Dis 56:63–72

    PubMed  CAS  Google Scholar 

  15. Jones A, Swiontkowski M, Polly D et al (2004) Use of rhBMP-2 in the treatment of open tibial shaft fractures: do improved outcomes outweigh the additional expense of rhBMP-2? OTA 20th annual meeting, Fort Lauderdale, FL

  16. Kanakaris NK, Calori GM, Verdonk R et al (2008) Application of BMP-7 to tibial non-unions: a 3-year multicenter experience. Injury 39(Suppl 2):S83–S90

    Article  PubMed  Google Scholar 

  17. Kanakaris NK, Giannoudis PV (2008) Clinical applications of bone morphogenetic proteins: current evidence. J Surg Orthop Adv 17:133–146

    PubMed  Google Scholar 

  18. Kanakaris NK, Giannoudis PV (2007) The health economics of the treatment of long-bone non-unions. Injury 38S2:77–84

    Article  Google Scholar 

  19. Kanakaris NK, Paliobeis C, Manidakis N et al (2007) Biological enhancement of tibial diaphyseal aseptic non-unions: the efficacy of autologous bone grafting, BMPs and reaming by-products. Injury 38S2:65–75

    Article  Google Scholar 

  20. Khan SN, Cammisa FP Jr, Sandhu HS et al (2005) The biology of bone grafting. J Am Acad Orthop Surg 13:77–86

    PubMed  Google Scholar 

  21. Maniadakis N, Gray A (2000) Health economics and orthopaedics. J Bone Joint Surg Br 82:2–8

    Article  PubMed  CAS  Google Scholar 

  22. McKay WF, Peckham SM, Badura JM (2007) A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int Orthop 31:729–734

    Article  PubMed  Google Scholar 

  23. Patil S, Montgomery R (2006) Management of complex tibial and femoral nonunion using the Ilizarov technique, and its cost implications. J Bone Joint Surg Br 88:928–932

    Article  PubMed  CAS  Google Scholar 

  24. Pecina M, Giltaij LR, Vukicevic S (2001) Orthopaedic applications of osteogenic protein-1 (BMP-7). Int Orthop 25:203–208

    Article  PubMed  CAS  Google Scholar 

  25. Pecina M, Haspl M, Jelic M et al (2003) Repair of a resistant tibial non-union with a recombinant bone morphogenetic protein-7 (rh-BMP-7). Int Orthop 27:320–321

    Article  PubMed  CAS  Google Scholar 

  26. St John TA, Vaccaro AR, Sah AP et al (2003) Physical and monetary costs associated with autogenous bone graft harvesting. Am J Orthop 32:18–23

    PubMed  Google Scholar 

  27. White AP, Vaccaro AR, Hall JA et al (2007) Clinical applications of BMP-7/OP-1 in fractures, nonunions and spinal fusion. Int Orthop 31:735–741

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Giannoudis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahabreh, Z., Calori, G.M., Kanakaris, N.K. et al. A cost analysis of treatment of tibial fracture nonunion by bone grafting or bone morphogenetic protein-7. International Orthopaedics (SICOT) 33, 1407–1414 (2009). https://doi.org/10.1007/s00264-008-0709-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-008-0709-6

Keywords

Navigation