Skip to main content

Advertisement

Log in

Five-year DEXA study of 88 hips with cemented femoral stem

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

We performed repeated dual-energy X-ray absorptiometry (DEXA) measurements over five years in a homogeneous patient population to study the effect of a cemented stem on proximal femoral bone remodelling. Data from 88 patients (88 hips) implanted with total hip arthroplasty (THA) prostheses were extracted from three randomised studies. Femoral bone mineral density (BMD) was measured using a Lunar DPX-IQ densitometer for five years postoperatively. At one year the BMD changes had decreased between −2.0% [region of interest (ROI) 1] and −11.5% (ROI 7). During the follow-up period the BMD initially increased during the second year and thereafter decreased again in ROIs 5, 6 and 7. The loss of BMD at five years was more pronounced in region 7 (12.9%) and decreased with increasing age, total hip replacement (THR) on the right side and decreasing weight of the patient. We found that after the initial phase of early bone loss a period of recovery follows. Thereafter the BMD decreases again, which probably reflects the normal ageing of bone after uncomplicated cemented THA.

Résumé

Nous avons réalisé des examens avec des mesures répétées de densité osseuse (DEXA) sur une période de 5 ans dans une population homogène de patients ayant bénéficié de la mise en place d’une prothèse fémorale cimentée avec évaluation de remodelage osseux. Nous avons extrait les données de 88 patients (88 hanches) de trois études randomisées. La densité minérale osseuse fémorale a été mesurée par densitomètre Lunar DPX-IQ durant les cinq années post-opératoires. A un an, la densité minérale osseuse diminue de −2% (zone 1) et de −11,5% (zone 7). Durant la période d’observation la densité minérale osseuse augmente au cours de la deuxième année et puis diminue à nouveau en zones 5, 6 et 7. La perte de densité osseuse à cinq ans est moins importante en zone 7 (12,9%) et diminue lorsque l’âge augmente notamment du côté droit et en fonction du poids des patients. Nous avons ainsi montré, qu’après une phase initiale de déminéralisation osseuse il existe une phase de reminéralisation puis la densité minérale osseuse diminue à nouveau ceci étant probablement dans les prothèses totales de hanches non compliquées le reflet de l’âge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aldinger PR, Sabo D, Pritsch M, Thomsen M, Mau H, Ewerbeck V, Breusch SJ (2003) Pattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month cross-sectional study with DXA. Calcif Tissue Int 73:115–121

    Article  CAS  PubMed  Google Scholar 

  2. Bodén HS, Sköldenberg OG, Salemyr MO, Lundberg HJ, Adolphson PY (2006) Continuous bone loss around a tapered uncemented femoral stem: a long-term evaluation with DEXA. Acta Orthop 77:877–885

    Article  PubMed  Google Scholar 

  3. Bonnick SL, Nichols DL, Sanborn CF, Payne SG, Moen SM, Heiss CJ (1996) Right and left proximal femur analyses: is there a need to do both? Calcif Tissue Int 58:307–310

    CAS  PubMed  Google Scholar 

  4. Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F (1993) Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14:681–691

    Article  CAS  PubMed  Google Scholar 

  5. Cohen B, Rushton N (1995) Bone remodeling in the proximal femur after Charnley total hip arthroplasty. J Bone Joint Surg Br 77:815–819

    CAS  PubMed  Google Scholar 

  6. Groessner-Schreiber B, Krukowski M, Lyons C, Osdoby P (1992) Osteoclast recruitment in response to human bone matrix is age related. Mech Ageing Dev 62:143–154

    Article  CAS  PubMed  Google Scholar 

  7. Gümüştekin K, Akar S, Dane S, Yildirim M, Seven B, Varoglu E (2004) Handedness and bilateral femoral bone densities in men and women. Int J Neurosci 114:1533–1547

    Article  PubMed  Google Scholar 

  8. Hall ML, Heavens J, Ell PJ (1991) Variation between femurs as measured by dual energy X-ray absorptiometry (DEXA). Eur J Nucl Med 18:38–40

    Article  CAS  PubMed  Google Scholar 

  9. Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, Kiel DP (2000) Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 15:710–720

    Article  CAS  PubMed  Google Scholar 

  10. Huiskes R (1990) The various stress patterns of press-fit, ingrown, and cemented femoral stems. Clin Orthop Relat Res 261:27–38

    PubMed  Google Scholar 

  11. Kilgus DJ, Shimaoka EE, Tipton JS, Eberle RW (1993) Dual-energy X-ray absorptiometry measurement of bone mineral density around porous-coated cementless femoral implants. Methods and preliminary results. J Bone Joint Surg Br 75:279–287

    CAS  PubMed  Google Scholar 

  12. Kiratli BJ, Heiner JP, McBeath AA, Wilson MA (1992) Determination of bone mineral density by dual x-ray absorptiometry in patients with uncemented total hip arthroplasty. J Orthop Res 10:836–844

    Article  CAS  PubMed  Google Scholar 

  13. Kiratli BJ, Checovich MM, McBeath AA, Wilson MA, Heiner JP (1996) Measurement of bone mineral density by dual-energy x-ray absorptiometry in patients with the Wisconsin hip, an uncemented femoral stem. J Arthroplasty 11:184–193

    Article  CAS  PubMed  Google Scholar 

  14. Kröger H, Miettinen H, Arnala I, Koski E, Rushton N, Suomalainen O (1996) Evaluation of periprosthetic bone using dual-energy x-ray absorptiometry: precision of the method and effect of operation on bone mineral density. J Bone Miner Res 11:1526–1530

    Article  PubMed  Google Scholar 

  15. Kröger H, Venesmaa P, Jurvelin J, Miettinen H, Suomalainen O, Alhava E (1998) Bone density at the proximal femur after total hip arthroplasty. Clin Orthop Relat Res 352:66–74

    PubMed  Google Scholar 

  16. Kärrholm J, Herberts P, Hultmark P, Malchau H, Nivbrant B, Thanner J (1997) Radiostereometry of hip prostheses. Review of methodology and clinical results. Clin Orthop Relat Res 344:94–110

    PubMed  Google Scholar 

  17. McCarthy CK, Steinberg GG, Agren M, Leahey D, Wyman E, Baran DT (1991) Quantifying bone loss from the proximal femur after total hip arthroplasty. J Bone Joint Surg Br 73:774–778

    CAS  PubMed  Google Scholar 

  18. Nishii T, Sugano N, Masuhara K, Shibuya T, Ochi T, Tamura S (1997) Longitudinal evaluation of time related bone remodeling after cementless total hip arthroplasty. Clin Orthop Relat Res 339:121–131

    Article  PubMed  Google Scholar 

  19. Ohta H, Kobayashi S, Saito N, Nawata M, Horiuchi H, Takaoka K (2003) Sequential changes in periprosthetic bone mineral density following total hip arthroplasty: a 3-year follow-up. J Bone Miner Metab 21:229–233

    PubMed  Google Scholar 

  20. Pitto RP, Mueller LA, Reilly K, Schmidt R, Munro J (2007) Quantitative computer-assisted osteodensitometry in total hip arthroplasty. Int Orthop 31:431–438

    Article  CAS  PubMed  Google Scholar 

  21. Pitto RP, Bhargava A, Pandit S, Walker C, Munro JT (2008) Quantitative CT-assisted osteodensitometry of femoral adaptive bone remodelling after uncemented total hip arthroplasty. Int Orthop 32:589–595

    Article  PubMed  Google Scholar 

  22. Rosenthall L, Bobyn JD, Tanzer M (1999) Bone densitometry: influence of prosthetic design and hydroxyapatite coating on regional adaptive bone remodelling. Int Orthop 23(6):325–329

    Article  CAS  PubMed  Google Scholar 

  23. Scott DF, Jaffe WL (1996) Host-bone response to porous-coated cobalt-chrome and hydroxyapatite-coated titanium femoral components in hip arthroplasty. Dual-energy x-ray absorptiometry analysis of paired bilateral cases at 5 to 7 years. J Arthroplasty 11:429–437

    Article  CAS  PubMed  Google Scholar 

  24. Venesmaa PK, Kröger HP, Jurvelin JS, Miettinen HJ, Suomalainen OT, Alhava EM (2003) Periprosthetic bone loss after cemented total hip arthroplasty: a prospective 5-year dual energy radiographic absorptiometry study of 15 patients. Acta Orthop Scand 74:31–36

    Article  PubMed  Google Scholar 

  25. Wilkinson JM, Peel NF, Elson RA, Stockley I, Eastell R (2001) Measuring bone mineral density of the pelvis and proximal femur after total hip arthroplasty. J Bone Joint Surg Br 83:283–288

    Article  CAS  PubMed  Google Scholar 

  26. Yamauchi M, Sugimoto T, Yamaguchi T, Nakaoka D, Kanzawa M, Yano S, Ozuru R, Sugishita T, Chihara K (2001) Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol (Oxf) 55:341–347

    Article  CAS  Google Scholar 

  27. Zerahn B, Lausten GS, Kanstrup IL (2004) Prospective comparison of differences in bone mineral density adjacent to two biomechanically different types of cementless femoral stems. Int Orthop 28(3):146–150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The institution of the authors has received funding from the Swedish Research Council (Project nr.K2002-73X-0741-16D), the Göteborg Medical Society, Centerpulse, Switzerland and Zimmer, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Digas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Digas, G., Kärrholm, J. Five-year DEXA study of 88 hips with cemented femoral stem. International Orthopaedics (SICOT) 33, 1495–1500 (2009). https://doi.org/10.1007/s00264-008-0699-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-008-0699-4

Keywords

Navigation