Skip to main content

Advertisement

Log in

Biological mechanisms of bone and cartilage remodelling—genomic perspective

  • Review
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Rapid advancements in the field of genomics, enabled by the achievements of the Human Genome Project and the complete decoding of the human genome, have opened an unimaginable set of opportunities for scientists to further unveil delicate mechanisms underlying the functional homeostasis of biological systems. The trend of applying whole-genome analysis techniques has also contributed to a better understanding of physiological and pathological processes involved in homeostasis of bone and cartilage tissues. Gene expression profiling studies have yielded novel insights into the complex interplay of osteoblast and osteoclast regulation, as well as paracrine and endocrine control of bone and cartilage remodelling. Mechanisms of new bone formation responsible for fracture healing and distraction osteogenesis, as well as healing of joint cartilage defects, have also been extensively studied. Microarray experiments have been especially useful in studying pathological processes involved in diseases such as osteoporosis or bone tumours. Existing results show that microarrays hold great promise in areas such as identification of targets for novel therapies or development of new biomarkers and classifiers in skeletal diseases.

Résumé

Les progrès rapides réalisés dans le cadre de la génétique nous ont permis d’achever le projet de génome humain et de compléter son décodage, ceci nous a permis de mieux comprendre également la physiologie et la pathologie de l’homéostasie des tissus osseux cartilagineux, l’expression des gênes interférant sur la régulation des ostéoclastes ou du remodelage osseux par l’intermédiaire d’un contrôle paracrine et endocrine. De même, en ce qui concerne les mécanismes responsables de la consolidation des fractures, de l’ostéogénèse en distraction, de la cicatrisation des lésions cartilagineuses. Ces classifications et ces expérimentations sont également utiles pour comprendre les processus pathologiques tel que l’ostéoporose ou les tumeurs osseuses. Ceci permettra de mettre en route de nouvelles thérapeutiques ou de développer de nouveaux marqueurs afin de pouvoir classer les lésions osseuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The genome is the complete set of sequences in the genetic material of an organism. It includes the sequences of each chromosome plus any DNA in organelles.

  2. The proteome is the complete set of proteins that is expressed by the entire genome. Because some genes code for multiple proteins, the size of the proteome is greater than the number of genes.

References

  1. Beck GR Jr, Zerler B, Moran E (2001) Gene array analysis of osteoblast differentiation. Cell Growth Differ 12:61–83

    PubMed  CAS  Google Scholar 

  2. Cappellen D, Luong-Nguyen NH, Bongiovanni S, Grenet O, Wanke C, Susa M (2002) Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappa B. J Biol Chem 277:21971–21982

    Article  PubMed  CAS  Google Scholar 

  3. Carvalho RS, Einhorn TA, Lehmann W, Edgar C, Al-Yamani A, Apazidis A, Pacicca D, Clemens TL, Gerstenfeld LC (2004) The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone 34:849–861

    Article  PubMed  CAS  Google Scholar 

  4. Chandar N, Logan D, Szajkovics A, Harmston W (2004) Gene expression changes accompanying p53 activity during estrogen treatment of osteoblasts. Life Sci 75:2045–2055

    Article  PubMed  CAS  Google Scholar 

  5. Dalla-Torre CA, Yoshimoto M, Lee CH, Joshua AM, de Toledo SR, Petrilli AS, Andrade JA, Chilton-MacNeill S, Zielenska M, Squire JA (2006) Effects of THBS3, SPARC and SPP1 expression on biological behavior and survival in patients with osteosarcoma. BMC Cancer 6:237

    Article  PubMed  Google Scholar 

  6. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163

    Article  PubMed  CAS  Google Scholar 

  7. Glass DA, Karsently G (2007) In vivo analysis of Wnt signaling in bone. Endocrinology. DOI 10.1210/en.2006-1372

  8. Goldring SR, Goldring MB (2007) Eating bone or adding it: the Wnt pathway decides. Nat Med 13:133–134

    Article  PubMed  CAS  Google Scholar 

  9. Hameetman L, Rozeman LB, Lombaerts M, Oosting J, Taminiau AH, Cleton-Jansen AM, Bovee JV, Hogendoorn PC (2006) Peripheral chondrosarcoma progression is accompanied by decreased Indian Hedgehog signalling. J Pathol 209:501–511

    Article  PubMed  CAS  Google Scholar 

  10. Heidenblad M, Hallor KH, Staaf J, Jonsson G, Borg A, Hoglund M, Mertens F, Mandahl N (2006) Genomic profiling of bone and soft tissue tumors with supernumerary ring chromosomes using tiling resolution bacterial artificial chromosome microarrays. Oncogene 25:7106–7116

    Article  PubMed  CAS  Google Scholar 

  11. Ishida N, Hayashi K, Hoshijima M, Ogawa T, Koga S, Miyatake Y, Kumegawa M, Kimura T, Takeya T (2002) Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 277:41147–41156

    Article  PubMed  CAS  Google Scholar 

  12. Kalajzic I, Staal A, Yang WP, Wu Y, Johnson SE, Feyen JH, Krueger W, Maye P, Yu F, Zhao Y, Kuo L, Gupta RR, Achenie LE, Wang HW, Shin DG, Rowe DW (2005) Expression profile of osteoblast lineage at defined stages of differentiation. J Biol Chem 280:24618–24626

    Article  PubMed  CAS  Google Scholar 

  13. Klein RF, Allard J, Avnur Z, Nikolcheva T, Rotstein D, Carlos AS, Shea M, Waters RV, Belknap JK, Peltz G, Orwoll ES (2004) Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 303:229–232

    Article  PubMed  CAS  Google Scholar 

  14. Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 11:880–885

    Article  PubMed  CAS  Google Scholar 

  15. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 30:755–764

    Article  Google Scholar 

  16. Lind M, Bunger C (2005) Orthopaedic applications of gene therapy. Int Orthop 29:205–209

    Article  PubMed  Google Scholar 

  17. Lindberg MK, Moverare S, Eriksson AL, Skrtic S, Gao H, Dahlman-Wright K, Gustafsson JA, Ohlsson C (2002) Identification of estrogen-regulated genes of potential importance for the regulation of trabecular bone mineral density. J Bone Miner Res 17:2183–2195

    Article  PubMed  CAS  Google Scholar 

  18. Liu YZ, Dvornyk V, Lu Y, Shen H, Lappe JM, Recker RR, Deng HW (2005) A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. J Biol Chem 280:29011–29016

    Article  PubMed  CAS  Google Scholar 

  19. Mintz MB, Sowers R, Brown KM, Hilmer SC, Mazza B, Huvos AG, Meyers PA, Lafleur B, McDonough WS, Henry MM, Ramsey KE, Antonescu CR, Chen W, Healey JH, Daluski A, Berens ME, Macdonald TJ, Gorlick R, Stephan DA (2005) An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res 65:1748–1754

    Article  PubMed  CAS  Google Scholar 

  20. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  PubMed  CAS  Google Scholar 

  21. Ohali A, Avigad S, Zaizov R, Ophir R, Horn-Saban S, Cohen IJ, Meller I, Kollender Y, Issakov J, Yaniv I (2004) Prediction of high risk Ewing’s sarcoma by gene expression profiling. Oncogene 23:8997–9006

    Article  PubMed  CAS  Google Scholar 

  22. Orlic I, Borovecki F, Simic P, Vukicevic S (2007) Gene expression profiling in bone tissue of osteoporotic mice. Arh Hig Rada Toksikol 58:3–11

    PubMed  CAS  Google Scholar 

  23. Pacicca DM, Patel N, Lee C, Salisbury K, Lehmann W, Carvalho R, Gerstenfeld LC, Einhorn TA (2003) Expression of angiogenic factors during distraction osteogenesis. Bone 33:889–898

    Article  PubMed  CAS  Google Scholar 

  24. Pecina M, Jelic M, Ivkovic A, Hudetz D (2006) Gene therapy applications in orthopaedics. Int Orthop 30:215–216

    Article  PubMed  Google Scholar 

  25. Pecina M, Jelic M, Martinovic S, Haspl M, Vukicevic S (2002) Articular cartilage repair: the role of bone morphogenetic proteins. Int Orthop 26:131–136

    Article  PubMed  CAS  Google Scholar 

  26. Qi H, Aguiar DJ, Williams SM, La Pean A, Pan W, Verfaillie CM (2003) Identification of genes responsible for osteoblast differentiation from human mesodermal progenitor cells. Proc Natl Acad Sci U S A 100:3305–3310

    Article  PubMed  CAS  Google Scholar 

  27. Reppe S, Stilgren L, Olstad OK, Brixen K, Nissen-Meyer LS, Gautvik KM, Abrahamsen B (2006) Gene expression profiles give insight into the molecular pathology of bone in primary hyperparathyroidism. Bone 39:189–198

    Article  PubMed  CAS  Google Scholar 

  28. Rozeman LB, Szuhai K, Schrage YM, Rosenberg C, Tanke HJ, Taminiau AH, Cleton-Jansen AM, Bovee JV, Hogendoorn PC (2006) Array-comparative genomic hybridization of central chondrosarcoma: identification of ribosomal protein S6 and cyclin-dependent kinase 4 as candidate target genes for genomic aberrations. Cancer 107:380–388

    Article  PubMed  CAS  Google Scholar 

  29. Rundle CH, Wang H, Yu H, Chadwick RB, Davis EI, Wergedal JE, Lau KH, Mohan S, Ryaby JT, Baylink DJ (2006) Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair. Bone 38:521–529

    Article  PubMed  CAS  Google Scholar 

  30. Siligan C, Ban J, Bachmaier R, Spahn L, Kreppel M, Schaefer KL, Poremba C, Aryee DN, Kovar H (2005) EWS-FLI1 target genes recovered from Ewing’s sarcoma chromatin. Oncogene 24:2512–2524

    Article  PubMed  CAS  Google Scholar 

  31. Stains JP, Civitelli R (2003) Genomic approaches to identifying transcriptional regulators of osteoblast differentiation. Genome Biol 4:222.1–222.4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Borovecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borovecki, F., Pecina-Slaus, N. & Vukicevic, S. Biological mechanisms of bone and cartilage remodelling—genomic perspective. International Orthopaedics (SICO 31, 799–805 (2007). https://doi.org/10.1007/s00264-007-0408-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-007-0408-8

Keywords

Navigation