Skip to main content
Log in

Quantitative CT-assisted osteodensitometry of femoral adaptive bone remodelling after uncemented total hip arthroplasty

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

The aim of this prospective study was to measure bone density changes and to assess adaptive bone remodelling after uncemented total hip arthroplasty with a taper-design femoral component using quantitative computer-tomography-assisted osteodensitometry. This method is able to differentiate cortical and cancellous bone structures. Twenty-seven consecutive patients (29 hips) with degenerative joint disease were enrolled in the study. Serial clinical, radiological and CT-osteodensitometry assessments were performed after the index operation. At the 2-year follow-up, the clinical outcome was rated satisfactory in all hips. The radiological assessment showed signs of osteointegration and stable fixation of all cups and stems. We observed a −17% decrease of cortical bone density and −22% decrease of cancellous bone density in the greater trochanter and femoral neck region. Cortical and cancellous bone density decrease at the level of the lesser trochanter was −9% and respectively −4%. We observed small changes of cortical bone density in the diaphyseal regions; in contrast, cancellous bone density increased (range 6% to 27%) in the diaphyseal regions. Overall, a trend of bone density recovery was observed throughout the follow-up period. Periprosthetic bone density changes at the 2-year follow-up are suggestive of stable osteointegration with proximal femoral diaphysis load transfer and moderate metaphyseal stress-shielding.

Résumé

Le but de cette étude prospective est de mesurer par scanner et ostéodensitométrie la densité osseuse et le remodelage osseux après prothèse non cimentée. Cette méthode permet de différencier les structures osseuses corticales et spongieuses. 27 patients consécutifs (29 hanches) présentant une coxarthrose ont été inclus dans cette étude qui a comporté une analyse radiologique, scanographique et ostéodensitométrie. Pour toutes les hanches à deux ans de suivi post-opératoire, le devenir clinique de ces patients était satisfaisant. La radiologie montrait des signes d’ostéointégration et de fixation stables dans toutes les cupules et pour toutes les pièces fémorales. Nous avons observé une diminution de 17% de la densité corticale et de 22% de la densité de l’os spongieux au niveau du grand trochanter et au niveau du calcar. Il existe également une diminution de la densité osseuse au niveau du petit trochanter tant sur le plan cortical 9% qu’au niveau de l’os spongieux 4%. Nous avons également observé de petites modifications de la densité osseuse corticale au niveau de la région diaphysaire, a contrario nous avons également mis en évidence une augmentation de la densité osseuse de l’os spongieux à ce niveau (de 6 à 27%). Ces différentes modifications osseuses nous permettent, à deux ans de suivi post-opératoire, de penser que l’ostéointégration proximale des éléments prothétiques entraîne un transfert de charge et un stress-shielding métaphysaire modéré.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Capello WN, D'Antonio JA, Manley MT, Feinberg JR (1998) Hydroxyapatite in total hip arthroplasty. Clinical results and critical issues. Clin Orthop Relat Res 355:200–211

    Article  PubMed  Google Scholar 

  2. Dorr LD, Faugere MC, Mackel AM, Gruen TA, Bognar B, Malluche HH (1993) Structural and cellular assessment of bone quality of proximal femur. Bone 14:231–242

    Article  PubMed  CAS  Google Scholar 

  3. Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg (Br) 69:45–55

    CAS  Google Scholar 

  4. Furnes O, Lie SA, Espehaug B, Vollset, SE, Engesaeter LB, Havelin LI (2001) Hip disease and the prognosis of total hip replacements. A review of 53,698 primary total hip replacements reported to the Norwegian Arthroplasty Register 1987–99. J Bone Joint Surg (Br) 83:579–586

    Article  CAS  Google Scholar 

  5. Gibbons CE. Davies AJ. Amis AA. Olearnik H. Parker BC. Scott JE. (2001) Periprosthetic bone mineral density changes with femoral components of differing design philosophy. Int Orthop 25:89–92

    Article  PubMed  CAS  Google Scholar 

  6. Huiskes R, Weinans H, Dalstra M (1989) Adaptive bone remodelling and biomechanical design considerations for noncemented total hip arthroplasty. Orthopedics 12:1255–1267

    PubMed  CAS  Google Scholar 

  7. Kobayashi S, Saito N, Horiuchi H, Iorio R, Takaoka K (2000) Poor bone quality or hip structure as risk factors affecting survival of total-hip arthroplasty. Lancet 355:1499–1504

    Article  PubMed  CAS  Google Scholar 

  8. Laine HJ, Puolakka TJ, Moilanen T, Pajamaki KJ, Wirta J, Lehto MU (2000) The effects of cementless femoral stem shape and proximal surface texture on 'fit-and-fill' characteristics and on bone remodeling. Int Orthop 24:184–190

    Article  PubMed  CAS  Google Scholar 

  9. Leali A, Fetto JF (2004) Preservation of femoral bone mass after total hip replacements with a lateral flare stem. Int Orthop 28:151–154

    Article  PubMed  Google Scholar 

  10. Martini F, Sell S, Kremling E, Kusswetter W (1996) Determination of periprosthetic bone density with the DEXA method after implantation of custom-made uncemented femoral stems. Int Orthop 20:218–221

    Article  PubMed  CAS  Google Scholar 

  11. Niinimaki T, Junila J, Jalovaara P (2001) A proximal fixed anatomic femoral stem reduces stress shielding. Int Orthop 25:85–88

    Article  PubMed  CAS  Google Scholar 

  12. Pandit S, Graydon A, Bradley, Walker C, Munro J, Pitto RP (2006) CT-Osteodensitometry in modern uncemented taper-design stem with hydroxyapatite coating. Australia-NZ J of Surg 76:778–781

    Article  Google Scholar 

  13. Pitto RP, Mueller L, Reilly K, Schmidt R, Munro J (2007) Quantitative computer assisted osteodensitometry in total hip arthroplasty. Int Orthop (in print)

  14. Rosenthall L, Bobyn JD, Tanzer M (1999) Bone densitometry: influence of prosthetic design and hydroxyapatite coating on regional adaptive bone remodelling. Int Orthop 23:325–329

    Article  PubMed  CAS  Google Scholar 

  15. Sanchez-Sotelo J, Lewallen DG, Harmsen WS, Harrington J, Cabanela ME (2004) Comparison of wear and osteolysis in hip replacement using two different coatings of the femoral stem. Int Orthop 28:206–210

    Article  PubMed  Google Scholar 

  16. Schmidt R, Muller L, Kress A, Hirschfelder H, Aplas A, Pitto RP (2002) A computed tomography assessment of femoral and acetabular bone changes after total hip arthroplasty. Int Orthop 26:299–302

    Article  PubMed  CAS  Google Scholar 

  17. Schmidt R, Mueller L, Nowak TE, Pitto RP (2003) Clinical outcome and periprosthetic bone remodelling of an uncemented femoral component with taper design. Int Orthop 27:204–207

    Article  PubMed  Google Scholar 

  18. Schmidt R, Nowak TE, Mueller L, Pitto RP (2004) Osteodensitometry after total hip replacement with uncemented taper-design stem. Int Orthop 28:74–77

    Article  PubMed  Google Scholar 

  19. Schmidt R, Pitto RP, Kress A, Ehremann C, Nowak TE, Reulbach U, Forst R, Muller L. (2005) Inter- and Intraobserver assessment of periacetabular osteodensitometry after cemented and uncemented total hip arthroplasty using computed tomography. Arch Ortho Trauma Surg 125:291–297

    Article  Google Scholar 

  20. Scott DF, Jaffe WL (1996) Host-bone response to porous-coated cobalt-chrome and hydroxyapatite-coated titanium femoral components in hip arthroplasty. Dual-energy x-ray absorptiometry analysis of paired bilateral cases at 5 to 7 years. J Arthroplasty 11:429–437

    Article  PubMed  CAS  Google Scholar 

  21. Shim V, Pitto RP, Streicher RM, Hunter PJ, Anderson IA (2007) The use of sparse CT datasets for auto-generating FE models of the femur and pelvis. J Biomech 40:26–35

    Article  PubMed  Google Scholar 

  22. Weber D, Pomeroy DL, Brown R, Schaper LA, Badenhausen WE Jr, Smith W, Curry JI, Suthers KE (2000) Proximally porous coated femoral stem in total hip replacement-5- to 13-year follow-up report. Int Orthop 24:97–100

    Article  PubMed  CAS  Google Scholar 

  23. Wolff, J (1892) Das Gesetz von der Transformation des Knochens. Hirschwald, Berlin

    Google Scholar 

  24. Zerahn B, Storgaard M, Johansen T, Olsen C, Lausten G, Kanstrup IL (1998) Changes in bone mineral density adjacent to two biomechanically different types of cementless femoral stems in total hip arthroplasty. Int Orthop 22:225–229

    Article  PubMed  CAS  Google Scholar 

  25. Zerahn B, Lausten GS, Kanstrup IL (2004) Prospective comparison of differences in bone mineral density adjacent to two biomechanically different types of cementless femoral stems. Int Orthop 28:146–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Garnet Tregonning, Dr. Lyndon Bradley, Dr. Godwyn Choy, Dr. Andrew Graydon, Dr. K. Reilly, and Dr. M. Rossaak for their assistance during the clinical follow-ups. The authors also wish to thank Dr. Lutz Mueller, Dr. Tobias Nowak and Dr. Rainer Schmidt for support during implementation of quantitative computer tomography research at the University of Auckland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco P. Pitto.

Additional information

Best Paper Award, SICOT Annual Conference, Buenos Aires 2006.

This study was supported by an educational grant from the New Zealand Wishbone Trust and was partially funded by DePuy LTD, Leeds, UK.

This study was approved by the local Ethical Board Review Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitto, R.P., Bhargava, A., Pandit, S. et al. Quantitative CT-assisted osteodensitometry of femoral adaptive bone remodelling after uncemented total hip arthroplasty. International Orthopaedics (SICO 32, 589–595 (2008). https://doi.org/10.1007/s00264-007-0389-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-007-0389-7

Keywords

Navigation