Skip to main content

Advertisement

Log in

Changes of bone mineral density after cementless total hip arthroplasty with two different stems

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Cementless total hip arthroplasty has achieved reliable long-term results since porous coatings were developed, but postoperative changes around the stem remain poorly documented. In this study, changes of the bone mineral density (BMD) were compared between two types of cementless stem. In group B (28 patients with 31 hips), a straight tapered stem with porous plasma spray coating on the proximal 1/4 was used, while group S (24 patients with 26 hips) was given a fluted, tri-slot stem with porous hydroxyapatite coating on the proximal 1/3. In group B, there was an early decrease of BMD, which recovered after 12 months, indicating that stress shielding was minimal. In group S, however, BMD continued to decrease without recovery. The stem shape and radiological findings suggested that the cause of stress shielding in group S was distal fixation.

Résumé

Les prothèses totales de hanche sans ciment ont de bons résultats à long terme, notamment depuis qu’ont été développées les techniques de revêtement poreux, mais les modifications post opératoires autour de la pièce fémorale, ont été jusqu’à présent peu documentées. Dans cette étude, nous avons souhaité étudier les modifications de la densité osseuse (BMD) en comparant deux types de prothèses sans ciment. Dans le groupe B (28 patients, 31 hanches) une pièce fémorale droite avec un plasma spray proximal pour le groupe S (24 patients, 26 hanches) la pièces fémorale a été recouverte d’hydroxyapatite sur le tiers proximal. Les patients du groupe B ont présenté une diminution précoce de la BMD indiquant un stress shielding minime et dans le groupe S, la BMD diminue sans récupération alors que cette BMB réaugmente dans le groupe B. Ceci nous indique que la cause du stress shielding dans le groupe S est secondaire à la fixation distale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bobyn JD, Glassman AH, Goto H, Krygier JJ, Miller JE, Brooks CE (1990) The effect of stem stiffness on femoral bone resorption after canine porous-coated total hip arthroplasty. Clin Orthop 261:196–213

    PubMed  Google Scholar 

  2. Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop 274:79–96

    PubMed  Google Scholar 

  3. Charnley J, Cupic Z (1973) The nine- and ten-year results of the low-friction arthroplasty of the hip. Clin Orthop 95:9–25

    PubMed  Google Scholar 

  4. Cohen B, Rushton N (1995) Accuracy of DEXA measurement of bone mineral density after total hip arthroplasty. J Bone Joint Surg 77B:479–483

    Google Scholar 

  5. Engh CA, Bobyn JD (1988) The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop 231:7–28

    PubMed  Google Scholar 

  6. Frost HM (1973) The origin and nature of transients in human bone remodeling dynamics. In: Frame B, Parfitt, AM, Duncan H (eds) Clinical aspects of metabolic bone disease. Excerpta Medica, Amsterdam, pp 124–137

    Google Scholar 

  7. Graeter JH, Nevins R (1998) Early osteolysis with Hylamer acetabular liners. J Arthroplasty 13:464–466

    Article  PubMed  CAS  Google Scholar 

  8. Gruen TA, McNeice GM, Amstutz HC (1979) Modes of failure of cemented stem-type femoral components. Clin Orthop 141:17–27

    PubMed  Google Scholar 

  9. Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. J Bone Joint Surg 51A:737–755

    Google Scholar 

  10. Huiskes R (1990) The various stress patterns of press-fit, ingrown, and cemented femoral stems. Clin Orthop 261:27–36

    PubMed  Google Scholar 

  11. Kilgus DJ, Shimaoka EE, Tipton JS, Eberle RW (1996) Dual-energy X-ray absorptiometry measurement of bone mineral density around porous-coated cementless femoral implants. J Bone Joint Surg 75B:279–287

    Google Scholar 

  12. Kiratli BJ, Checovich MM, Mcbeath AA, Wilson MA (1996) Measurement of bone mineral density by dual-energy X-ray absorptiometry in patients with the Wisconsin hip, an uncemented femoral stem. J Arthroplasty 11:184–193

    Article  PubMed  CAS  Google Scholar 

  13. Kroger H, Miettinen H, Arnala I, Koski E, Rushton N, Suomalainen O (1996) Evaluation of periprosthetic bone using dual-energy X-ray absorptiometry: precision of the method and effect of operation on bone mineral density. J Bone Miner Res 11:1526–1530

    Article  PubMed  CAS  Google Scholar 

  14. Manley MT, D’Antonio JA, Capello WN, Edidin AA (2002) Osteolysis: a disease of access to fixation interfaces. Clin Orthop 405:129–137

    Article  PubMed  Google Scholar 

  15. McCarthy CK, Steinberg GG, Agren M, Leahey D, Wyman E, Baran DT (1991) Quantifying bone loss from the proximal femur after total hip arthroplasty. J Bone Joint Surg 73B:774–778

    Google Scholar 

  16. Nakamura Y, Katano H, Kudo Y, Okada H, Hirakawa H, Matutani K, Matumoto K (1994) A clinical study of AML cementless femoral stem. J Joint Surg Jpn 13:1075–1081

    Google Scholar 

  17. Niinimaki T, Junila J, Jalovaara P (2001) A proximal fixed anatomic femoral stem reduces stress shielding. Int Orthop 25:85–88

    Article  PubMed  CAS  Google Scholar 

  18. Nishii T, Sugano N, Masuhara K (1997) Longitudinal evaluation of time related bone remodeling after cementless total hip arthroplasty. Clin Orthop 339:123–131

    Google Scholar 

  19. Richmond BJ, Bauer TW, Stulberg BN (1990) Bone mineral density in patients undergoing uncemented total hip arthroplasty. Calcif Tissue Int 46:145

    Google Scholar 

  20. Rosenthall L, Bobyn JD, Brooks CE (1999) Temporal changes of periprosthetic bone density in patients with a modular noncemented femoral prosthesis. J Arthroplasty 14:71–76

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt R, Muller L, Nowak TE, Pitto RP (2003) Clinical outcome and periprosthetic bone remodeling of an uncemented femoral component with taper design. Int Orthop 27:204–207

    Article  PubMed  Google Scholar 

  22. Schmidt R, Nowak TE, Muller L, Pitto RP (2004) Osteodensitometry after total hip replacement with uncemented taper-design stem. Int Orthop 28:74–77

    Article  PubMed  Google Scholar 

  23. Skinner HB, Kim AS, Keyak JH, Keyak JH, Mote CD (1994) Femoral prosthesis induces changes in bone stress that depend on the extent of porous coating. J Orthop Res 12:553–563

    Article  PubMed  CAS  Google Scholar 

  24. Sochart D (1999) Relationship of acetabular wear to osteolysis and loosening in total hip arthroplasty. Clin Orthop 363:135–150

    PubMed  Google Scholar 

  25. Spittlehouse AJ, Smith TW, Eastell R (1998) Bone loss around two different types of hip prostheses. J Arthroplasty 13:422–427

    Article  PubMed  CAS  Google Scholar 

  26. Tunner TM, Sumner DR, Urban RM, Igroria R, Galante JO (1997) Maintenance of proximal cortical bone with use of a less stiff femoral component in hemiarthroplasty of the hip without cement. J Bone Joint Surg 79A:1381–1390

    Google Scholar 

  27. Wilson CR, Fogelman I, Blake GM, Rodin A (1991) The effect of positioning on dual-energy X-ray bone densitometry of the proximal femur. Bone Miner 13:69–76

    Article  PubMed  CAS  Google Scholar 

  28. Wixson RL, Stulberg D, Van Flandern GJ, Puri L (1997) Maintenance of proximal bone mass with an uncemented femoral stem: analysis with dual-energy X-ray absorptiometry. J Arthroplasty 12:365–372

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Sano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sano, K., Ito, K. & Yamamoto, K. Changes of bone mineral density after cementless total hip arthroplasty with two different stems. International Orthopaedics (SICO 32, 167–172 (2008). https://doi.org/10.1007/s00264-006-0298-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-006-0298-1

Keywords

Navigation