Skip to main content

Advertisement

Log in

Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

This work analyzes the effects of storage by fresh-freezing at −80°C on the histological, structural and biomechanical properties of the human posterior tibial tendon (PTT), used for ACL reconstruction. Twenty-two PTTs were harvested from eleven donors. For each donor one tendon was frozen at −80°C and thawed in physiological solution at 37°C, and the other was tested without freezing (control). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and biomechanical analysis were performed. We found the following mean changes in frozen-thawed tendons compared to controls: TEM showed an increase in the mean diameter of collagen fibrils and in fibril non-occupation mean ratio, while the mean number of fibrils decreased; DSC showed a decrease in mean denaturation temperature and denaturation enthalpy. Biomechanical analysis showed a decrease in ultimate load and ultimate stress, an increase in stiffness and a decrease in ultimate strain of tendons. In conclusion fresh-freezing brings about significant changes in the biomechanical and structural properties of the human PTT. A high variability exists in the biophysical properties of tendons among individuals and in the effects of storage on tendons. Therefore, when choosing an allograft tendon, particular care is needed to choose a biomechanically suitable graft.

Résumé

Ce travail a pour but d’analyser les effets du stockage à −80°C sur le plan histologique, structurel et biomécanique d’un tendon le tibial ou jambier postérieur (PTT), utilisé pour la reconstruction des ligaments croisés antérieurs. 22 PTT ont été conservées provenant de 11 donneurs. Pour chaque donneur un tendon a été congelé à −80°C et l’autre, conservé dans une solution physiologique à 37°C. Ces tendons ont été testés. L’examen par microscope électronique (TEM), le scanner calorimétrique (DSC) et une analyse biomécanique ont été réalisés. Nous avons trouvé des changements dans les tendons conservés au froid en comparaison du groupe contrôle. Le TEM, examen au microscope électronique a montré une diminution du diamètre des fibres collagènes. L’analyse biomécanique a montré également une diminution de la résistance à la charge et au stress ainsi qu’une augmentation de la rigidité et une diminution des contraintes terminales au niveau du tendon. En conclusion: la congélation des tendons frais amène des modifications significatives des caractéristiques biomécaniques et structurelles du tendon PTT humain. Il existe une variation importante des propriétés biophysiques des tendons parmi les individus et du fait de leurs conservations. Pour cela, il est nécessaire lorsque l’on choisit un tendon et une allogreffe du tendon d’apporter dans le choix sur le plan biomécanique un soin particulier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Achet D, He XW (1995) Determination of the renaturation level gelatin films. Polymer 36:787–791

    Article  CAS  Google Scholar 

  2. Barad S, Cabaud HE, Rodrigo JJ (1982) Effects of storage at−80°C as compared to 4°C on the strength of Rhesus Monkey anterior cruciate ligaments. Transactions of the Annual Meetings of the Orthopaedic Research Society 7:378

    Google Scholar 

  3. Caborn DNM, Selby JB (2002) Allograft anterior tibialis tendon with bioabsorbable interference screw fixation in anterior cruciate ligament reconstruction. Arthroscopy 18(1):102–105

    Article  PubMed  Google Scholar 

  4. Clavert P, Kempf JF, Bonnomet F et al (2001) Effects of freezing/thawing on the biomechanical properties of human tendons. Surg Radiol Anat 23:259–262

    Article  PubMed  CAS  Google Scholar 

  5. Dorlot JM, Ait ba Sidi M, Grembley GM, Drouin G (1980) Load-elongation behaviour of the canine anterior cruciate ligament. J Biomech Eng 102:190–193

    Article  PubMed  CAS  Google Scholar 

  6. Ferretti A, Conteduca F, Morelli F et al (2003) Biomechanics of ACL reconstruction using twisted doubled hamstring tendons. Int Orthop 27:22–25

    PubMed  CAS  Google Scholar 

  7. Gitelis S, Cole BJ (2002) The use of allografts in orthopaedic surgery. Instr Course Lect 51:507–525

    PubMed  Google Scholar 

  8. Graf BK, Fujisaki K, Vanderby R, Vailas AC (1992) The effect of in situ freezing on rabbit patellar tendon (A histologic, biochemical and biomechanical analysis). Am J Sports Med 20(4):401–405

    Article  PubMed  CAS  Google Scholar 

  9. Hamner DL, Brown CH, Steiner ME et al (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: Biomechanical evaluation of the use of multiple strands and tensioning technique. J Bone Joint Surg 81-A:549–557

    Google Scholar 

  10. Haut Donahue TL, Howell SM, Hull ML, Gregerson C (2002) A biomechanical evaluation of anterior and posterior tibialis tendons as suitable single-loop anterior cruciate ligament grafts. Arthroscopy 18(6):589–597

    Article  PubMed  Google Scholar 

  11. Indelicato PA, Linton RC, Huegel M (1992) The results of fresh-frozen patellar tendon allografts for chronic anterior cruciate ligament deficiency of the knee. Am J Sports Med 20(2):118–121

    Article  PubMed  CAS  Google Scholar 

  12. Indelli PF, Dillingham MF, Fanton GS, Shurman DJ (2004) Anterior cruciate ligament reconstruction using cryopreserved allografts. Clin Orthop 420:268–275

    Article  PubMed  Google Scholar 

  13. Jackson DW, Grood ES, Cohn BT et al (1991) The effects of in situ freezing on the anterior cruciate ligament. J Bone Joint Surg 73-A(2):201–213

    Google Scholar 

  14. Kuechle DK, Pearson SE, Beach WR et al (2002) Allograft anterior cruciate ligament reconstruction in patients over 40 years of age. Arthroscopy 18(8):845–853

    Article  PubMed  Google Scholar 

  15. Linn RM, Fischer DA, Smith JP et al (1993) Achilles tendon allograft reconstruction of the anterior cruciate ligament-deficient knee. Am J Sports Med 21(6):825–831

    Article  PubMed  CAS  Google Scholar 

  16. Miles CA, Bailey AJ (1999) Thermal denaturation of collagen revisited. Proc Indian Acad Sci Chem Sci 111:71–80

    CAS  Google Scholar 

  17. Miles CA, Wardale RJ, Birch HL, Bailey AJ (1994) Differential scanning calorimetric studies of superficial digital flexor tendon degeneration in the horse. Equine Vet J 26:291–296

    PubMed  CAS  Google Scholar 

  18. Noyes FR, Barber SD, Mangine RE (1990) Bone-Patellar ligament-Bone and fascia lata allografts for reconstruction of the anterior cruciate ligament. J Bone Joint Surg 72-A(8):1125–1136

    Google Scholar 

  19. Noyes FR, Butler DL, Grood ES et al (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg 66–A:344–352

    Google Scholar 

  20. Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in human and Rhesus monkeys. Age-related and species-related changes. J Bone Joint Surg 58-A:1074–1082

    Google Scholar 

  21. Nyland J, Caborn DNM, Rothbauer J et al (2003) Two-year outcomes following ACL reconstruction with alograft tibialis anterior tendons: a retrospective study. Knee Surg Sports Traumatol Arthrosc 11:212–218

    Article  PubMed  CAS  Google Scholar 

  22. Ohno K, Yasuda K, Yamamoto M et al (1993) Effects of complete stress-shielding on the mechanical properties and histology of in situ frozen patellar tendon. J Orthop Res 11:592–602

    Article  PubMed  CAS  Google Scholar 

  23. Pearsall AW, Hollis JM, Russell GV, Scheer Z (2003) A biomechanical comparison of three lower extremity tendons for ligamentous reconstruction about the knee. Arthroscopy 19(10):1091–1096

    Article  PubMed  Google Scholar 

  24. Shino K, Inoue M, Horibe S et al (1990) Reconstruction of the anterior cruciate ligament using allogenic tendon (Long-term followup). Am J Sports Med 18(5):457–465

    Article  PubMed  CAS  Google Scholar 

  25. Siebold R, Buelow JU, Bos L, Ellermann A (2003) Primary ACL reconstruction with fresh-frozen patellar versus Achilles tendon allograft. Arch Orthop Trauma Surg 123:180–185

    PubMed  CAS  Google Scholar 

  26. Smith CW, Young IS, Kearney JN (1996) Mechanical properties of tendons: Changes with sterilization and preservation. J Biomech Eng 118:56–61

    Article  PubMed  CAS  Google Scholar 

  27. Staubli HU, Schatzmann L, Brunner P et al (1999) Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med 27(1):27–34

    PubMed  CAS  Google Scholar 

  28. Tsuchida T, Yasuda K, Kaneda K et al (1997) Effects of in situ freezing and stress-shielding on the ultrastructure of rabbit patellar tendon. J Orthop Res 15:904–910

    Article  PubMed  CAS  Google Scholar 

  29. Viidik A, Lewin T (1966) Changes in tensile strength characteristics and histology of rabbit ligaments induced by different modes of post-mortem storage. Acta Orthop Scand 37:141–155

    Article  PubMed  CAS  Google Scholar 

  30. Wainer RA, Clarke TJ, Poehling GG (1988) Arthroscopic reconstruction of the anterior cruciate ligament using allograft tendon. Arthroscopy 4(3):199–205

    Article  PubMed  CAS  Google Scholar 

  31. Wilson TW, Zafuta MP, Zobitz M (1999) A biomechanical analysis of matched bone-patellar tendon-bone and doubled-looped semitendinosus and gracilis tendon grafts. Am J Sports Med 27(2):202–207

    PubMed  CAS  Google Scholar 

  32. Woo SL, Hollis JM, Adams DJ et al (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex (The effects of specimen age and orientation). Am J Sports Med 19(3):217–225

    Article  PubMed  CAS  Google Scholar 

  33. Woo SL, Orlando CA, Camp JF, Akeson WH (1986) Effects of post-mortem storage by freezing on ligament tensile behaviour. J Biomech 19(5):399–404

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank CITIEFFE (Calderara di Reno, Bologna, Italy) for providing the equipment to carry out the biomechanical tests. We thank R. Strocchi and M. Solmi for histological analysis, K. Rubini for calorimetric analysis, and L. Stracqualursi for help with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Di Caprio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannini, S., Buda, R., Di Caprio, F. et al. Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons. International Orthopaedics (SICO 32, 145–151 (2008). https://doi.org/10.1007/s00264-006-0297-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-006-0297-2

Keywords

Navigation