Skip to main content


Log in

Orthopaedic applications of gene therapy

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript


Gene therapy presents a novel approach to biological treatment. Several orthopaedic diseases can cause changes in biological signalling at the tissue level that potentially can be repaired or modified by inserting genes into the cells or tissues to modulate gene expression. Impaired bone healing, need for extensive bone formation, cartilage repair and metabolic bone diseases are all conditions where alterations of the signalling peptides involved may provide cure or improvement. In orthopaedic oncology, gene therapy may achieve induction of tumour necrosis and increased tumour sensitivity to chemotherapy. In the last decade, extensive improvements have been made to optimise gene therapy and have been tested on several orthopaedic conditions. How far this development has come in orthopaedics is highlighted in this paper.


La thérapie génique représente une nouvelle approche comme traitement biologique. Plusieurs maladies orthopédiques peuvent causer des changements au niveau des tissus qui potentiellement peuvent être réparés ou modifiés en insérant des gènes dans les cellules pour moduler l’expression du gène. Les maladies métaboliques sont des conditions ou l’altération de certains peptides particuliers peuvent fournir une guérison ou une amélioration. En oncologie la thérapie gènique peut améliorer la nécrose tumorale et accroitre la sensibilité de la tumeur à la chimiothérapie. Des améliorations importantes ont été faites dans la dernière décennie pour optimiser cette thérapie qui a été testée dans plusieurs conditions orthopédiques. Cet article envisage les développements actuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others



Mesenchymal stem cell


Insulin-like growth factor


Bone morphogenetic protein


Transforming growth factor beta




Receptor antagonist of the NF kappa beta ligand


Colony stimulating factor-1


Tissue inhibitor of metalloproteinase


Degenerative disc disease


Platelet-derived growth factor


LIM mineralization protein 1


TNF-related apoptosis-inducing ligand


  1. Abboud SL, Woodruff K, Liu C, Shen V, Ghosh-Choudhury N (2002) Rescue of the osteopetrotic defect in op/op mice by osteoblast-specific targeting of soluble colony-stimulating factor-1. Endocrinology 143:1942–1949

    Article  CAS  PubMed  Google Scholar 

  2. Baltzer AW, Lattermann C, Whalen JD, Wooley P, Weiss K, Grimm M, Ghivizzani SC, Robbins PD, Evans CH (2000) Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther 7:734–739

    Article  CAS  PubMed  Google Scholar 

  3. Boden SD, Titus L, Hair G, Liu Y, Viggeswarapu M, Nanes MS, Baranowski C (1998) Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 23:2486–2492

    Article  CAS  PubMed  Google Scholar 

  4. Bonadio J, Smiley E, Patil P, Goldstein S (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 5:753–759

    Article  CAS  PubMed  Google Scholar 

  5. Burkus JK, Transfeldt EE, Kitchel SH, Watkins RG, Balderston RA (2002) Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 27:2396–2408

    Article  PubMed  Google Scholar 

  6. Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, Zych GA, Calhoun JH, LaForte AJ, Yin S (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 83 (Suppl 1):S151–S158

    Google Scholar 

  7. Goater JJ, O’Keefe RJ, Rosier RN, Puzas JE, Schwarz EM (2002) Efficacy of ex vivo OPG gene therapy in preventing wear debris induced osteolysis. J Orthoptera Res 20:169–173

    Article  CAS  Google Scholar 

  8. Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, Aro H, Atar D, Bishay M, Borner MG, Chiron P, Choong P, Cinats J, Courtenay B, Feibel R, Geulette B, Gravel C, Haas N, Raschke M, Hammacher E, van der Velde, Hardy P, Holt M, Josten C, Ketterl RL, Lindeque B, Lob G, Mathevon H, McCoy G, Marsh D, Miller R, Munting E, Oevre S, Nordsletten L, Patel A, Pohl A, Rennie W, Reynders P, Rommens PM, Rondia J, Rossouw WC, Daneel PJ, Ruff S, Ruter A, Santavirta S, Schildhauer TA, Gekle C, Schnettler R, Segal D, Seiler H, Snowdowne RB, Stapert J, Taglang G, Verdonk R, Vogels L, Weckbach A, Wentzensen A, Wisniewski T (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 84:2123–2134

    Article  Google Scholar 

  9. Grande DA, Mason J, Light E, Dines D (2003) Stem cells as platforms for delivery of genes to enhance cartilage repair. J Bone Joint Surg Am 85 (Suppl 2):111–116

    Google Scholar 

  10. Helm GA, Alden TD, Beres EJ, Hudson SB, Das S, Engh JA, Pittman DD, Kerns KM, Kallmes DF (2000) Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg Spine 92:191–196

    Article  CAS  Google Scholar 

  11. Lehrman S (1999) Virus treatment questioned after gene therapy death. Nature 401:517–518

    Article  CAS  PubMed  Google Scholar 

  12. Lieberman JR, Daluiski A, Stevenson S, Wu L, McAllister P, Lee YP, Kabo JM, Finerman GA, Berk AJ, Witte ON (1999) The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 81:905–917

    CAS  PubMed  Google Scholar 

  13. Lollo CP, Banaszczyk MG, Chiou HC (2000) Obstacles and advances in non-viral gene delivery. Curr Opin Mol Ther 2:136–142

    CAS  PubMed  Google Scholar 

  14. Moon SH, Gilbertson LG, Nishida K, Knaub M, Muzzonigro T, Robbins PD, Evans CH, Kang JD (2000) Human intervertebral disc cells are genetically modifiable by adenovirus-mediated gene transfer: implications for the clinical management of intervertebral disc disorders. Spine 25:2573–2579

    Article  CAS  PubMed  Google Scholar 

  15. Musgrave DS, Bosch P, Ghivizzani S, Robbins PD, Evans CH, Huard J (1999) Adenovirus-mediated direct gene therapy with bone morphogenetic protein-2 produces bone. Bone 24:541–547

    Article  CAS  PubMed  Google Scholar 

  16. Nishida K, Kang JD, Gilbertson LG, Moon SH, Suh JK, Vogt MT, Robbins PD, Evans CH (1999) Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine 24:2419–2425

    Article  CAS  PubMed  Google Scholar 

  17. Nishida K, Kang JD, Suh JK, Robbins PD, Evans CH, Gilbertson LG (1998) Adenovirus-mediated gene transfer to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration. Spine 23:2437–2442

    Article  CAS  PubMed  Google Scholar 

  18. Niyibizi C, Smith P, Mi Z, Phillips CL, Robbins P (2001) Transfer of proalpha2(I) cDNA into cells of a murine model of human Osteogenesis Imperfecta restores synthesis of type I collagen comprised of alpha1(I) and alpha2(I) heterotrimers in vitro and in vivo. J Cell Biochem 83:84–91

    Article  CAS  PubMed  Google Scholar 

  19. Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J, Huard J (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 110:751–759

    Article  CAS  PubMed  Google Scholar 

  20. Ramnaraine M, Pan W, Goblirsch M, Lynch C, Lewis V, Orchard P, Mantyh P, Clohisy DR (2003) Direct and bystander killing of sarcomas by novel cytosine deaminase fusion gene. Cancer Res 63:6847–6854

    CAS  PubMed  Google Scholar 

  21. Riew KD, Wright NM, Cheng S, Avioli LV, Lou J (1998) Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model. Calcif Tissue Int 63:357–360

    Article  CAS  PubMed  Google Scholar 

  22. Robbins PD, Ghivizzani SC (1998) Viral vectors for gene therapy. Pharmacol Ther 80:35–47

    Article  CAS  PubMed  Google Scholar 

  23. Rutherford RB, Moalli M, Franceschi RT, Wang D, Gu K, Krebsbach PH (2002) Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng 8:441–452

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki H, Hotta T, Koyama T, Komagata M, Imakiire A, Yanase N, Yoshimoto T, Mizuguchi J (2003) Retrovirus-mediated transduction of TRAIL and chemotherapeutic agents co-operatively induce apoptotic cell death in both sarcoma and myeloma cells. Anticancer Res 23:3247–3253

    CAS  PubMed  Google Scholar 

  25. Thompson JP, Oegema TR Jr, Bradford DS (1991) Stimulation of mature canine intervertebral disc by growth factors. Spine 16:253–260

    Article  CAS  PubMed  Google Scholar 

  26. Turgeman G, Pittman DD, Muller R, Kurkalli BG, Zhou S, Pelled G, Peyser A, Zilberman Y, Moutsatsos IK, Gazit D (2001) Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 3:240–251

    Article  CAS  PubMed  Google Scholar 

  27. Wallach CJ, Sobajima S, Watanabe Y, Kim JS, Georgescu HI, Robbins P, Gilbertson LG, Kang JD (2003) Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine 28:2331–2337

    Article  PubMed  Google Scholar 

  28. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Martin Lind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lind, M., Bünger, C. Orthopaedic applications of gene therapy. International Orthopaedics (SICOT) 29, 205–209 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: