Skip to main content

Advertisement

Log in

The impact of oncogenic driver mutations on neoadjuvant immunotherapy outcomes in patients with resectable non-small cell lung cancer

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Neoadjuvant immunotherapy has been demonstrated to be effective and safe in resectable non-small cell lung cancer (NSCLC) patients. However, the presence of different oncogenic driver mutations may affect the tumor microenvironment and consequently influence the clinical benefit from immunotherapy.

Methods

This retrospective study included consecutive NSCLC patients (stage IIA to IIIB) who underwent radical surgery after receiving neoadjuvant immunotherapy at a single high-volume center between December 2019 and August 2022. Pathological response and long-term outcomes were compared based on the driver oncogene status, and RNA sequencing analysis was conducted to investigate the transcriptomic characteristics before and after treatment.

Results

Of the 167 patients included in this study, 47 had oncogenic driver mutations. KRAS driver mutations were identified in 28 patients, representing 59.6% of oncogenic driver mutations. Of these, 17 patients had a major pathological response, which was significantly higher than in the non-KRAS driver mutation group (60.7% vs. 31.6%, P = 0.049). Multivariate Cox regression analysis further revealed that the KRAS driver mutation group was an independent prognostic factor for prolonged disease-free survival (hazard ratio: 0.10, P = 0.032). The median proportion of CD8+ T cells was significantly higher in the KRAS driver mutation NSCLCs than in the non-driver mutation group (18% vs. 13%, P = 0.030). Furthermore, immune-related pathways were enriched in the KRAS driver mutation NSCLCs and activated after immunotherapy.

Conclusion

Our study suggests that NSCLC patients with KRAS driver mutations have a superior response to neoadjuvant immunotherapy, possibly due to their higher immunogenicity. The findings highlight the importance of considering oncogenic driver mutations in selecting neoadjuvant treatment strategies for NSCLC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

RNA sequencing data were deposited in the Genome Sequence Archive database under accession number HRA002071. Data and codes utilized in this study are immediately available from the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17–48

    Article  PubMed  Google Scholar 

  2. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL et al (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389(10066):299–311

    Article  CAS  PubMed  Google Scholar 

  3. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny Costa E et al (2019) Nivolumab plus Ipilimumab in advanced non-small-cell lung cancer. N Engl J Med 381(21):2020–2031

    Article  CAS  PubMed  Google Scholar 

  5. Blumenthal GM, Bunn PA Jr, Chaft JE, McCoach CE, Perez EA, Scagliotti GV et al (2018) Current status and future perspectives on neoadjuvant therapy in lung cancer. J Thorac Oncol 13(12):1818–1831

    Article  CAS  PubMed  Google Scholar 

  6. Forde PM, Spicer J, Lu S, Provencio M, Mitsudomi T, Awad MM et al (2022) Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med 386(21):1973–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leal TA, Ramalingam SS (2022) Neoadjuvant therapy gains FDA approval in non-small cell lung cancer. Cell Rep Med 3(7):100691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. National Comprehensive Cancer Network. Non-Small Cell Lung Cancer (Version 2.2023). https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf.

  9. Hanna NH, Robinson AG, Temin S, Baker S Jr, Brahmer JR, Ellis PM et al (2021) Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO and OH (CCO) joint guideline update. J Clin Oncol 39(9):1040–1091

    Article  CAS  PubMed  Google Scholar 

  10. Zhao ZR, Lin ZC, Shen JF, Xie ZH, Jiang L (2023) Neoadjuvant immunotherapy in oncogene-positive non-small cell lung cancer: a multicenter study. Ann of Thorac Surg 116(4):703–710

    Article  Google Scholar 

  11. Chaft JE, Oezkan F, Kris MG, Bunn PA, Wistuba II, Kwiatkowski DJ et al (2022) Neoadjuvant atezolizumab for resectable non-small cell lung cancer: an open-label, single-arm phase II trial. Nat Med 28(10):2155–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang C, Chen HF, Yan S, Wu L, Yan LX, Yan XL et al (2022) Induction immune-checkpoint inhibitors for resectable oncogene-mutant NSCLC: a multicenter pooled analysis. NPJ Precis Oncol 6(1):66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS et al (2017) Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171(4):934–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Otano I, Ucero AC, Zugazagoitia J, Paz-Ares L (2023) At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol 20(3):143–159

    Article  PubMed  Google Scholar 

  15. Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L et al (2019) Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol 30(8):1321–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T et al (2018) A phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor Naive patients with advanced NSCLC. J Thorac Oncol 13(8):1138–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang P, Dai J, Sun F, Xia H, He W, Duan L et al (2022) Neoadjuvant sintilimab and chemotherapy for resectable stage IIIA non-small cell lung cancer. Ann Thorac Surg 114(3):949–958

    Article  PubMed  Google Scholar 

  18. Zhu X, Sun L, Song N, He W, Xie B, Hu J et al (2022) Safety and effectiveness of neoadjuvant PD-1 inhibitor (toripalimab) plus chemotherapy in stage II-III NSCLC (LungMate 002): an open-label, single-arm, phase 2 trial. BMC Med 20(1):493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu Y, Zeng D, Ou Q, Liu S, Li A, Chen Y et al (2019) Association of survival and immune-related biomarkers with immunotherapy in patients with non-small cell lung cancer: a meta-analysis and individual patient-level analysis. JAMA Netw Open 2(7):e196879

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu C, Zheng S, Jin R, Wang X, Wang F, Zang R et al (2020) The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett 470:95–105

    Article  CAS  PubMed  Google Scholar 

  22. Anderson NR, Minutolo NG, Gill S, Klichinsky M (2021) Macrophage-based approaches for cancer immunotherapy. Cancer Res 81(5):1201–1208

    Article  CAS  PubMed  Google Scholar 

  23. Hu J, Zhang L, Xia H, Yan Y, Zhu X, Sun F et al (2023) Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing. Genome Med 15(1):14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y et al (2021) Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res 9(1):72

    Article  PubMed  PubMed Central  Google Scholar 

  25. El Osta B, Behera M, Kim S, Berry LD, Sica G, Pillai RN et al (2019) Characteristics and outcomes of patients with metastatic KRAS-mutant lung adenocarcinomas: the lung cancer mutation consortium experience. J Thorac Oncol 14(5):876–889

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu SY, Sun H, Zhou JY, Jie GL, Xie Z, Shao Y et al (2020) Clinical characteristics and prognostic value of the KRAS G12C mutation in Chinese non-small cell lung cancer patients. Biomark Res 8:22

    Article  PubMed  PubMed Central  Google Scholar 

  27. Slebos RJ, Kibbelaar RE, Dalesio O, Kooistra A, Stam J, Meijer CJ et al (1990) K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med 323(9):561–565

    Article  CAS  PubMed  Google Scholar 

  28. Passiglia F, Cappuzzo F, Alabiso O, Bettini AC, Bidoli P, Chiari R et al (2019) Efficacy of nivolumab in pre-treated non-small-cell lung cancer patients harbouring KRAS mutations. Br J Cancer 120(1):57–62

    Article  CAS  PubMed  Google Scholar 

  29. Jeanson A, Tomasini P, Souquet-Bressand M, Brandone N, Boucekine M, Grangeon M et al (2019) Efficacy of immune checkpoint inhibitors in KRAS-mutant non-small cell lung cancer (NSCLC). J Thorac Oncol 14(6):1095–1101

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Zhang Z, Rinsurongkawong W, Gay CM, Le X, Ning MS et al (2022) Association of driver oncogene variations with outcomes in patients with locally advanced non-small cell lung cancer treated with chemoradiation and consolidative durvalumab. JAMA Netw Open 5(6):e2215589

    Article  PubMed  PubMed Central  Google Scholar 

  31. Salgia R, Pharaon R, Mambetsariev I, Nam A, Sattler M (2021) The improbable targeted therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC). Cell Rep Med 2(1):100186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Li C, Wang Z, Wang Z, Wu R, Wu Y et al (2022) Comparison between immunotherapy efficacy in early non-small cell lung cancer and advanced non-small cell lung cancer: a systematic review. BMC Med 20(1):426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY et al (2017) Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res 23(12):3012–3024

    Article  CAS  PubMed  Google Scholar 

  34. Tape CJ, Ling S, Dimitriadi M, McMahon KM, Worboys JD, Leong HS et al (2016) Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell 165(7):1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, Shapiro GI et al (2020) KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N Engl J Med 383(13):1207–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qiao M, Jiang T, Liu X, Mao S, Zhou F, Li X et al (2021) Immune checkpoint inhibitors in EGFR-mutated NSCLC: Dusk or dawn? J Thorac Oncol 16(8):1267–1288

    Article  CAS  PubMed  Google Scholar 

  37. Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z et al (2016) EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res 22(18):4585–4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lv C, Fang W, Wu N, Jiao W, Xu S, Ma H et al (2023) Osimertinib as neoadjuvant therapy in patients with EGFR-mutant resectable stage II-IIIB lung adenocarcinoma (NEOS): a multicenter, single-arm, open-label phase 2b trial. Lung Cancer 178:151–156

    Article  CAS  PubMed  Google Scholar 

  39. Zhong WZ, Yan HH, Chen KN, Chen C, Gu CD, Wang J et al (2023) Erlotinib versus gemcitabine plus cisplatin as neoadjuvant treatment of stage IIIA-N2 EGFR-mutant non-small-cell lung cancer: final overall survival analysis of the EMERGING-CTONG 1103 randomised phase II trial. Signal Transduct Target Ther 8(1):76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Negrao MV, Skoulidis F, Montesion M, Schulze K, Bara I, Shen V, Xu H, Hu S, Sui D, Elamin YY, Le X (2021) Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer. J Immunother Cancer 9(8):e002891

    Article  PubMed  PubMed Central  Google Scholar 

  41. Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371(23):2167–2177

    Article  PubMed  Google Scholar 

  42. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW et al (2017) Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 377(9):829–838

    Article  CAS  PubMed  Google Scholar 

  43. Skoulidis F, Heymach JV (2019) Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer 19(9):495–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J et al (2015) Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 5(8):860–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. West HJ, McCleland M, Cappuzzo F, Reck M, Mok TS, Jotte RM et al (2022) Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS-mutated non-small cell lung cancer with STK11, KEAP1, or TP53 comutations: subgroup results from the phase III IMpower150 trial. J Immunother Cancer 10(2):e003027

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant no. 82125001), the Innovation Program of Shanghai Municipal Education Commission (Grant no. 2023ZKZD33), Clinical Research foundation of Shanghai Pulmonary Hospital (Grant no. FKLY20004), and Science and Technology Commission of Shanghai Municipality (Grant no. 23YF1435200).

Author information

Authors and Affiliations

Authors

Contributions

Concept and design were contributed by ZS, LZ and PZ; Acquisition of data was contributed by ZS, MT, DB, JZ, XZ, YQ, SH, YC, WY and HY; Analysis and interpretation of clinical data and RNA sequencing data were contributed by ZS, MT and LH; Drafting of the manuscript was contributed by ZS and LZ. Critical revision was contributed by ZS, MT, LH, LZ and PZ. Funding acquisition was contributed by ZS and PZ. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Lele Zhang or Peng Zhang.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1310 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Teng, M., Han, L. et al. The impact of oncogenic driver mutations on neoadjuvant immunotherapy outcomes in patients with resectable non-small cell lung cancer. Cancer Immunol Immunother 72, 4235–4247 (2023). https://doi.org/10.1007/s00262-023-03560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03560-x

Keywords

Navigation