Skip to main content

Advertisement

Log in

A novel CD47-blocking peptide fused to pro-apoptotic KLA repeat inhibits lung cancer growth in mice

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

CD47 is highly expressed in many tumor tissues and induces immune evasion by interaction with SIRP-alpha (signal regulatory protein-alpha) expressed on tumor-associated macrophages. In this study, we identified a novel CD47-blocking peptide VK17 by phage display technique. A pro-apoptotic VK30 peptide was obtained after VK17 was fused to KLA amino acid repeat at C-termini. The VK30 was specifically bound to CD47 on lung cancer cells, and subsequently inducing lung cancer cell apoptosis. Meanwhile, the expression of Bax was increased, whereas the expression of Bcl-2 and Ki-67 were reduced in the VK30-treated lung cancer cells. In addition, VK30 effectively improved the phagocytic activity of macrophages against VK30-pretreated lung cancer cells. Combinational treatment of lung cancer cells with blocking antibody anti-CD47 and VK30 additively enhanced VK30 binding to CD47, subsequently increasing lung cancer cell apoptosis and macrophage phagocytosis. Intraperitoneal administration of 2 mg/kg VK30 induced effective trafficking of VK30 into tumor tissues, and suppressing lung cancer cell growth in mice, associated with increased tumor cell apoptosis, macrophage activation and phagocytosis in vivo. The expression of CD47 was reduced in the VK30-treated tumor tissues and the expression level was positively correlated to tumor size. In addition, VK30 reduced the infiltration of CD11b+Ly6G+ neutrophils and CD11b+Ly6C+Ly6G+ granulocytic myeloid-derived suppressor cells (Gr-MDSCs) in tumor tissues, associated with suppressed expression of tumorigenic IL-6 and TNF-alpha from these cell types. Thereby, VK30 exerted anti-tumor effects in mice through inducing tumor cell apoptosis and macrophage phagocytosis. VK30 would be a novel therapeutic peptide in lung cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao W, Chen HD, Yu YW, Li N, Chen WQ (2021) Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl) 134(7):783–791

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  3. Mizuno T, Katsuya Y, Sato J, Koyama T, Shimizu T, Yamamoto N (2022) Emerging PD-1/PD-L1 targeting immunotherapy in non-small cell lung cancer: current status and future perspective in Japan, US, EU, and China. Front Oncol 12:925938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou N, Tang H, Yu S, Lin Y, Wang Y, Wang Y (2022) Anti-PD-1 antibodies, a novel treatment option for advanced chemoresistant pulmonary lymphoepithelioma carcinoma. Front Immunol 13:1001414

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arrieta O, Montes-Servin E, Hernandez-Martinez JM, Cardona AF, Casas-Ruiz E, Crispin JC, Motola D, Flores-Estrada D, Barrera L (2017) Expression of PD-1/PD-L1 and PD-L2 in peripheral T-cells from non-small cell lung cancer patients. Oncotarget 8(60):101994–102005

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yu ZZ, Liu YY, Zhu W, Xiao D, Huang W, Lu SS, Yi H, Zeng T, Feng XP, Yuan L et al (2023) ANXA1-derived peptide for targeting PD-L1 degradation inhibits tumor immune evasion in multiple cancers. J immunother cancer. https://doi.org/10.1136/jitc-2022-006345

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nigro A, Ricciardi L, Salvato I, Sabbatino F, Vitale M, Crescenzi MA, Montico B, Triggiani M, Pepe S, Stellato C et al (2019) Enhanced expression of CD47 is associated with off-target resistance to tyrosine kinase inhibitor gefitinib in NSCLC. Front Immunol 10:3135

    Article  CAS  PubMed  Google Scholar 

  8. Weiskopf K, Jahchan NS, Schnorr PJ, Cristea S, Ring AM, Maute RL, Volkmer AK, Volkmer JP, Liu J, Lim JS et al (2016) CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Investig 126(7):2610–2620

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kurebayashi Y, Olkowski CP, Lane KC, Vasalatiy OV, Xu BC, Okada R, Furusawa A, Choyke PL, Kobayashi H, Sato N (2021) Rapid depletion of intratumoral regulatory T cells induces synchronized CD8 T and NK cell activation and IFN-gamma-dependent tumor vessel regression. Cancer res 81(11):3092–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hamilton G, Rath B (2019) Immunotherapy for small cell lung cancer: mechanisms of resistance. Expert Opin Biol Ther 19(5):423–432

    Article  CAS  PubMed  Google Scholar 

  11. Genova C, Dellepiane C, Carrega P, Sommariva S, Ferlazzo G, Pronzato P, Gangemi R, Filaci G, Coco S, Croce M (2021) Therapeutic implications of tumor microenvironment in lung cancer: focus on immune checkpoint blockade. Front Immunol 12:799455

    Article  PubMed  Google Scholar 

  12. Hallett RM, Bonfill-Teixidor E, Iurlaro R, Arias A, Raman S, Bayliss P, Egorova O, Neva-Alejo A, McGray AR, Lau E et al (2023) Therapeutic targeting of LIF overcomes macrophage-mediated Immunosuppression of the local tumor microenvironment. Clin Cancer Res Off J Am Assoc Cancer Res 29(4):791–804

    Article  CAS  Google Scholar 

  13. Pan L, Wang B, Chen M, Ma Y, Cui B, Chen Z, Song Y, Hu L, Jiang Z (2023) Lack of SIRP-alpha reduces lung cancer growth in mice by promoting anti-tumour ability of macrophages and neutrophils. Cell Prolif 56(2):e13361

    Article  CAS  PubMed  Google Scholar 

  14. Sun L, Zhang Y, Yang T, Chen J, Zhang X, Liang X (2022) IGFBP2 drives regulatory T cell differentiation through STAT3/IDO signaling pathway in pancreatic cancer. J Pers Med. https://doi.org/10.3390/jpm12122005

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yuan J, He H, Chen C, Wu J, Rao J, Yan H (2019) Combined high expression of CD47 and CD68 is a novel prognostic factor for breast cancer patients. Cancer Cell Int 19:238

    Article  PubMed  PubMed Central  Google Scholar 

  16. Giatromanolaki A, Mitrakas A, Anestopoulos I, Kontosis A, Koukourakis IM, Pappa A, Panayiotidis MI, Koukourakis MI (2022) Expression of CD47 and SIRPalpha macrophage immune-checkpoint pathway in non-small-cell lung cancer. Cancers. https://doi.org/10.3390/cancers14071801

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang L, Huang H (2016) Targeting the cancer biomarker CD47: a review on the diverse mechanisms of the CD47 pathway in cancer treatment. Anticancer Agents Med Chem 16(6):658–667

    Article  CAS  PubMed  Google Scholar 

  18. Liu L, Zhang L, Yang L, Li H, Li R, Yu J, Yang L, Wei F, Yan C, Sun Q et al (2017) Anti-CD47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells. Front Immunol 8:404

    Article  PubMed  PubMed Central  Google Scholar 

  19. Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, Manning PT, Frazier WA, Karr RW, Pereira DS (2020) Development of AO-176, a next-generation humanized anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther 19(3):835–846

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Meng Z, Xu T, Kuerban K, Wang S, Zhang X, Fan J, Ju D, Tian W, Huang X et al (2022) A SIRPalphaFc fusion protein conjugated with the collagen-binding domain for targeted immunotherapy of non-small cell lung cancer. Front Immunol 13:845217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang H, Sun Y, Zhou X, Chen C, Jiao L, Li W, Gou S, Li Y, Du J, Chen G et al (2020) CD47/SIRPalpha blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy. J immunother cancer. https://doi.org/10.1136/jitc-2020-000905

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cui Z, Xu D, Zhang F, Sun J, Song L, Ye W, Zeng J, Zhou M, Ruan Z, Zhang L et al (2021) CD47 blockade enhances therapeutic efficacy of cisplatin against lung carcinoma in a murine model. Exp Cell Res 405(2):112677

    Article  CAS  PubMed  Google Scholar 

  23. Theruvath J, Menard M, Smith BAH, Linde MH, Coles GL, Dalton GN, Wu W, Kiru L, Delaidelli A, Sotillo E et al (2022) Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat Med 28(2):333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ingram JR, Blomberg OS, Sockolosky JT, Ali L, Schmidt FI, Pishesha N, Espinosa C, Dougan SK, Garcia KC, Ploegh HL et al (2017) Localized CD47 blockade enhances immunotherapy for murine melanoma. Proc Natl Acad Sci USA 114(38):10184–10189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP et al (2018) CD47 blockade by Hu5F9-G4 and rituximab in Non-Hodgkin’s lymphoma. N Engl J Med 379(18):1711–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feliz-Mosquea YR, Christensen AA, Wilson AS, Westwood B, Varagic J, Melendez GC, Schwartz AL, Chen QR, Mathews Griner L, Guha R et al (2018) Combination of anthracyclines and anti-CD47 therapy inhibit invasive breast cancer growth while preventing cardiac toxicity by regulation of autophagy. Breast Cancer Res Treat 172(1):69–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Candas-Green D, Xie B, Huang J, Fan M, Wang A, Menaa C, Zhang Y, Zhang L, Jing D, Azghadi S et al (2020) Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nat Commun 11(1):4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao H, Wang J, Kong X, Li E, Liu Y, Du X, Kang Z, Tang Y, Kuang Y, Yang Z et al (2016) CD47 promotes tumor invasion and metastasis in non-small cell lung cancer. Sci Rep 6:29719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cabrales P (2019) RRx-001 acts as a dual small molecule checkpoint inhibitor by downregulating CD47 on cancer cells and SIRP-alpha on monocytes/macrophages. Transl oncol 12(4):626–632

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, Luan J, Wang Z, Song P, Chen Q et al (2017) Targeting CD47 and autophagy elicited enhanced antitumor effects in non-small cell lung cancer. Cancer Immunol Res 5(5):363–375

    Article  CAS  PubMed  Google Scholar 

  31. Yu XY, Qiu WY, Long F, Yang XP, Zhang C, Xu L, Chang HY, Du P, Hou XJ, Yu YZ et al (2018) A novel fully human anti-CD47 antibody as a potential therapy for human neoplasms with good safety. Biochimie 151:54–66

    Article  CAS  PubMed  Google Scholar 

  32. Kim HY, Kim S, Youn H, Chung JK, Shin DH, Lee K (2011) The cell penetrating ability of the proapoptotic peptide, KLAKLAKKLAKLAK fused to the N-terminal protein transduction domain of translationally controlled tumor protein MIIYRDLISH. Biomaterials 32(22):5262–5268

    Article  CAS  PubMed  Google Scholar 

  33. Bahmani T, Sharifzadeh S, Tamaddon G, Farzadfard E, Zare F, Fadaie M, Alizadeh M, Hadi M, Ranjbaran R, Mosleh-Shirazi MA et al (2021) Mitochondrial targeted peptide (KLAKLAK)2, and its synergistic radiotherapy effects on apoptosis of radio resistant human monocytic leukemia cell line. J Biomed Phys Eng 11(2):229–238

    PubMed  PubMed Central  Google Scholar 

  34. Barua S, Linton RS, Gamboa J, Banerjee I, Yarmush ML, Rege K (2010) Lytic peptide-mediated sensitization of TRAIL-resistant prostate cancer cells to death receptor agonists. Cancer Lett 293(2):240–253

    Article  CAS  PubMed  Google Scholar 

  35. Charbgoo F, Alibolandi M, Taghdisi SM, Abnous K, Soltani F, Ramezani M (2018) MUC1 aptamer-targeted DNA micelles for dual tumor therapy using doxorubicin and KLA peptide. Nanomed Nanotechnol Biol Med 14(3):685–697

    Article  CAS  Google Scholar 

  36. Permpoon U, Khan F, Vadevoo SMP, Gurung S, Gunassekaran GR, Kim MJ, Kim SH, Thuwajit P, Lee B (2020) Inhibition of tumor growth against chemoresistant cholangiocarcinoma by a proapoptotic peptide targeting interleukin-4 receptor. Mol Pharm 17(11):4077–4088

    Article  CAS  PubMed  Google Scholar 

  37. Khan F, Gurung S, Gunassekaran GR, Vadevoo SMP, Chi L, Permpoon U, Haque ME, Lee YK, Lee SW, Kim S et al (2021) Identification of novel CD44v6-binding peptides that block CD44v6 and deliver a pro-apoptotic peptide to tumors to inhibit tumor growth and metastasis in mice. Theranostics 11(3):1326–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–6440

    Article  CAS  PubMed  Google Scholar 

  39. Yin Z, Ma T, Lin Y, Lu X, Zhang C, Chen S, Jian Z (2018) IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. J Cell Biochem 119(11):9419–9432

    Article  CAS  PubMed  Google Scholar 

  40. Xu Y, Li J, Tong B, Chen M, Liu X, Zhong W, Zhao J, Wang M (2020) Positive tumour CD47 expression is an independent prognostic factor for recurrence in resected non-small cell lung cancer. ESMO Open 5(4):e000823

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gong B, Guo D, Zheng C, Ma Z, Zhang J, Qu Y, Li X, Li G, Zhang L, Wang Y (2022) Complement C3a activates astrocytes to promote medulloblastoma progression through TNF-alpha. J Neuroinflammation 19(1):159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yao D, Xia J, Li J, Xu J (2018) CD47 is associated with the up-regulation of the PD-1 oncogenic signaling pathway. Int J Clin Exp Pathol 11(12):5612–5621

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Koh J, Kim Y, Lee KY, Hur JY, Kim MS, Kim B, Cho HJ, Lee YC, Bae YH, Ku BM et al (2020) MDSC subtypes and CD39 expression on CD8(+) T cells predict the efficacy of anti-PD-1 immunotherapy in patients with advanced NSCLC. Eur J Immunol 50(11):1810–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Michaeli J, Shaul ME, Mishalian I, Hovav AH, Levy L, Zolotriov L, Granot Z, Fridlender ZG (2017) Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-cells in a TNFalpha and NO-dependent mechanism, promoting a tumor-supportive environment. Oncoimmunology 6(11):e1356965

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ju X, Zhang H, Zhou Z, Chen M, Wang Q (2020) Tumor-associated macrophages induce PD-L1 expression in gastric cancer cells through IL-6 and TNF-a signaling. Exp Cell Res 396(2):112315

    Article  CAS  PubMed  Google Scholar 

  46. Skartsis N, Peng Y, Ferreira LMR, Nguyen V, Ronin E, Muller YD, Vincenti F, Tang Q (2021) IL-6 and TNFalpha drive extensive proliferation of human tregs without compromising their lineage stability or function. Front Immunol 12:783282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China to ZLJ (82370082) and ZHC (81970023); Shanghai Municipal Key Clinical Specialty and Science and Technology Commission of Shanghai Municipality to YLS (shslczdzk02201, 20DZ2261200).

Author information

Authors and Affiliations

Authors

Contributions

LP, LH, MC and YG participated in collection and analysis of lung cancer tissues, cell culture, Western blot and animal experiments. YS, ZC and CL participated in generation of hypothesis, supervision and discussion. ZJ was responsible for generation of hypothesis, performing flow cytometry analysis, data analysis and assembly, manuscript writing and revision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chun Li or Zhilong Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Human tissues were collected following written informed consent of all participants, according to the Declaration of Helsinki and granted by the Ethics Committee of Zhongshan Hospital. All animal protocols were approved by Institutional Animal Care and Use Committee at Zhongshan Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

262_2023_3554_MOESM1_ESM.jpg

Supplemental Figure S1. Identification of bone marrow-derived macrophages (BMDMs) by flow cytometry analysis. Bone marrow cells were differentiated for 7 days and F4/80+ BMDMs were gated on CD11b+ cells. Representative histogram. (JPG 147 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Hu, L., Chen, M. et al. A novel CD47-blocking peptide fused to pro-apoptotic KLA repeat inhibits lung cancer growth in mice. Cancer Immunol Immunother 72, 4179–4194 (2023). https://doi.org/10.1007/s00262-023-03554-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03554-9

Keywords

Navigation