Skip to main content

Advertisement

Log in

Radiation-associated secondary malignancies: a novel opportunity for applying immunotherapies

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Radiation is commonly used as a treatment intended to cure or palliate cancer patients. Despite remarkable advances in the precision of radiotherapy delivery, even the most advanced forms inevitably expose some healthy tissues surrounding the target site to radiation. On rare occasions, this results in the development of radiation-associated secondary malignancies (RASM). RASM are typically high-grade and carry a poorer prognosis than their non-radiated counterparts. RASM are characterized by a high mutation burden, increased T cell infiltration, and a microenvironment that bears unique inflammatory signatures of prior radiation, including increased expression of various cytokines (e.g., TGF-β, TNF-α, IL4, and IL10). Interestingly, these cytokines have been shown to up-regulate the expression of PD-1 and/or PD-L1—an immune checkpoint receptor/ligand pair that is commonly targeted by immune checkpoint blocking immunotherapies. Here, we review the current understanding of the tumor-immune interactions in RASM, highlight the distinct clinical and molecular characteristics of RASM that may render them immunologically “hot,” and propose a rationale for the formal testing of immune checkpoint blockade as a treatment approach for patients with RASM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ravanat JL, Breton J, Douki T, Gasparutto D, Grand A, Rachidi W et al (2014) Radiation-mediated formation of complex damage to DNA: a chemical aspect overview. Br J Radiol 87(1035):20130715

    Article  PubMed  PubMed Central  Google Scholar 

  2. Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104(6):1129–1137

    Article  PubMed  Google Scholar 

  3. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106

    Article  CAS  PubMed  Google Scholar 

  4. Friedman DL, Whitton J, Leisenring W, Mertens AC, Hammond S, Stovall M et al (2010) Subsequent neoplasms in 5-year survivors of childhood cancer: the childhood cancer survivor study. J Natl Cancer Inst 102(14):1083–1095

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brenner DJ, Curtis RE, Hall EJ, Ron E (2000) Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 88(2):398–406

    Article  CAS  PubMed  Google Scholar 

  6. Morton LM, Onel K, Curtis RE, Hungate EA, Armstrong GT (2014) The rising incidence of second cancers: patterns of occurrence and identification of risk factors for children and adults. Am Soc Clin Oncol Edu Book. https://doi.org/10.14694/EdBook_AM.2014.34.e57

    Article  Google Scholar 

  7. Berrington de Gonzalez A, Curtis RE, Kry SF, Gilbert E, Lamart S, Berg CD et al (2011) Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol 12(4):353–360

    Article  PubMed  Google Scholar 

  8. Cahan WG, Woodard HQ et al (1948) Sarcoma arising in irradiated bone; report of 11 cases. Cancer 1(1):3–29

    Article  CAS  PubMed  Google Scholar 

  9. Yeang MS, Tay K, Ong WS, Thiagarajan A, Tan DS, Ha TC et al (2013) Outcomes and prognostic factors of post-irradiation and de novo sarcomas of the head and neck: a histologically matched case-control study. Ann Surg Oncol 20(9):3066–3075

    Article  PubMed  Google Scholar 

  10. Gladdy RA, Qin LX, Moraco N, Edgar MA, Antonescu CR, Alektiar KM et al (2010) Do radiation-associated soft tissue sarcomas have the same prognosis as sporadic soft tissue sarcomas? J Clin Oncol 28(12):2064–2069

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bjerkehagen B, Smeland S, Walberg L, Skjeldal S, Hall KS, Nesland JM et al (2008) Radiation-induced sarcoma: 25-year experience from the Norwegian Radium Hospital. Acta Oncol 47(8):1475–1482

    Article  CAS  PubMed  Google Scholar 

  12. Tay GC, Iyer NG, Ong WS, Tai D, Ang MK, Ha TC et al (2016) Outcomes and prognostic factors of radiation-induced and de novo head and neck squamous cell carcinomas. Otolaryngol Head Neck Surg 154(5):880–887

    Article  PubMed  Google Scholar 

  13. Lee JS, DuBois SG, Coccia PF, Bleyer A, Olin RL, Goldsby RE (2016) Increased risk of second malignant neoplasms in adolescents and young adults with cancer. Cancer 122(1):116–123

    Article  PubMed  Google Scholar 

  14. MacArthur AC, Spinelli JJ, Rogers PC, Goddard KJ, Phillips N, McBride ML (2007) Risk of a second malignant neoplasm among 5-year survivors of cancer in childhood and adolescence in British Columbia. Canada Pediatr Blood Cancer 48(4):453–459

    Article  PubMed  Google Scholar 

  15. Meadows AT, Friedman DL, Neglia JP, Mertens AC, Donaldson SS, Stovall M et al (2009) Second neoplasms in survivors of childhood cancer: findings from the childhood cancer survivor study cohort. J Clin Oncol 27(14):2356–2362

    Article  PubMed  PubMed Central  Google Scholar 

  16. Armstrong GT, Liu W, Leisenring W, Yasui Y, Hammond S, Bhatia S et al (2011) Occurrence of multiple subsequent neoplasms in long-term survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol 29(22):3056–3064

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hall EJ (2006) Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 65(1):1–7

    Article  PubMed  Google Scholar 

  18. Boice JD Jr, Harvey EB, Blettner M, Stovall M, Flannery JT (1992) Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med 326(12):781–785

    Article  PubMed  Google Scholar 

  19. Chaturvedi AK, Engels EA, Gilbert ES, Chen BE, Storm H, Lynch CF et al (2007) Second cancers among 104,760 survivors of cervical cancer: evaluation of long-term risk. J Natl Cancer Inst 99(21):1634–1643

    Article  PubMed  Google Scholar 

  20. Berrington de Gonzalez A, Wong J, Kleinerman R, Kim C, Morton L, Bekelman JE (2015) Risk of second cancers according to radiation therapy technique and modality in prostate cancer survivors. Int J Radiat Oncol Biol Phys 91(2):295–302

    Article  PubMed  Google Scholar 

  21. Hooning MJ, Aleman BM, Hauptmann M, Baaijens MH, Klijn JG, Noyon R et al (2008) Roles of radiotherapy and chemotherapy in the development of contralateral breast cancer. J Clin Oncol 26(34):5561–5568

    Article  PubMed  Google Scholar 

  22. De Bruin ML, Sparidans J, vanʹt Veer MB, Noordijk EM, Louwman MW, Zijlstra JM et al (2009) Breast cancer risk in female survivors of Hodgkin’s lymphoma: lower risk after smaller radiation volumes. J Clin Oncol 27(26):4239–4246

    Article  PubMed  Google Scholar 

  23. Xiang M, Chang DT, Pollom EL (2020) Second cancer risk after primary cancer treatment with three-dimensional conformal, intensity-modulated, or proton beam radiation therapy. Cancer 126(15):3560–3568

    Article  PubMed  Google Scholar 

  24. Sethi RV, Shih HA, Yeap BY, Mouw KW, Petersen R, Kim DY et al (2014) Second nonocular tumors among survivors of retinoblastoma treated with contemporary photon and proton radiotherapy. Cancer 120(1):126–133

    Article  PubMed  Google Scholar 

  25. Mullenders L, Atkinson M, Paretzke H, Sabatier L, Bouffler S (2009) Assessing cancer risks of low-dose radiation. Nat Rev Cancer 9(8):596–604

    Article  CAS  PubMed  Google Scholar 

  26. Schneider U, Lomax A, Timmermann B (2008) Second cancers in children treated with modern radiotherapy techniques. Radiother Oncol 89(2):135–140

    Article  PubMed  Google Scholar 

  27. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10(6):415–424

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Q, Liu J, Ao N, Yu H, Peng Y, Ou L et al (2020) Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep 10(1):1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abo-Madyan Y, Aziz MH, Aly MM, Schneider F, Sperk E, Clausen S et al (2014) Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer. Radiother Oncol 110(3):471–476

    Article  PubMed  Google Scholar 

  31. Chera BS, Vargas C, Morris CG, Louis D, Flampouri S, Yeung D et al (2009) Dosimetric study of pelvic proton radiotherapy for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 75(4):994–1002

    Article  PubMed  Google Scholar 

  32. Fontenot JD, Lee AK, Newhauser WD (2009) Risk of secondary malignant neoplasms from proton therapy and intensity-modulated x-ray therapy for early-stage prostate cancer. Int J Radiat Oncol Biol Phys 74(2):616–622

    Article  PubMed  PubMed Central  Google Scholar 

  33. Braunstein S, Nakamura JL (2013) Radiotherapy-induced malignancies: review of clinical features, pathobiology, and evolving approaches for mitigating risk. Front Oncol 3:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M et al (2015) Revisiting li-fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 33(21):2345–2352

    Article  CAS  PubMed  Google Scholar 

  35. Le AN, Harton J, Desai H, Powers J, Zelley K, Bradbury AR et al (2020) Frequency of radiation-induced malignancies post-adjuvant radiotherapy for breast cancer in patients with Li-Fraumeni syndrome. Breast Cancer Res Treat 181(1):181–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hendrickson PG, Luo Y, Kohlmann W, Schiffman J, Maese L, Bishop AJ et al (2020) Radiation therapy and secondary malignancy in Li-Fraumeni syndrome: a hereditary cancer registry study. Cancer Med 9(21):7954–7963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wong FL, Boice JD Jr, Abramson DH, Tarone RE, Kleinerman RA, Stovall M et al (1997) Cancer incidence after retinoblastoma. Radiat Sarcoma Risk JAMA 278(15):1262–1267

    CAS  Google Scholar 

  38. Best T, Li D, Skol AD, Kirchhoff T, Jackson SA, Yasui Y et al (2011) Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin’s lymphoma. Nat Med 17(8):941–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Knight JA, Skol AD, Shinde A, Hastings D, Walgren RA, Shao J et al (2009) Genome-wide association study to identify novel loci associated with therapy-related myeloid leukemia susceptibility. Blood 113(22):5575–5582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Armstrong GT, Sklar CA, Hudson MM, Robison LL (2007) Long-term health status among survivors of childhood cancer: Does sex matter? J Clin Oncol 25(28):4477–4489

    Article  PubMed  Google Scholar 

  41. Bhatia S, Sklar C (2002) Second cancers in survivors of childhood cancer. Nat Rev Cancer 2(2):124–132

    Article  PubMed  Google Scholar 

  42. Prochazka M, Hall P, Gagliardi G, Granath F, Nilsson BN, Shields PG et al (2005) Ionizing radiation and tobacco use increases the risk of a subsequent lung carcinoma in women with breast cancer: case-only design. J Clin Oncol 23(30):7467–7474

    Article  PubMed  Google Scholar 

  43. Travis LB, Gospodarowicz M, Curtis RE, Clarke EA, Andersson M, Glimelius B et al (2002) Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. J Natl Cancer Inst 94(3):182–192

    Article  PubMed  Google Scholar 

  44. Behjati S, Gundem G, Wedge DC, Roberts ND, Tarpey PS, Cooke SL et al (2016) Mutational signatures of ionizing radiation in second malignancies. Nat Commun 7:12605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Donson AM, Erwin NS, Kleinschmidt-DeMasters BK, Madden JR, Addo-Yobo SO, Foreman NK (2007) Unique molecular characteristics of radiation-induced glioblastoma. J Neuropathol Exp Neurol 66(8):740–749

    Article  CAS  PubMed  Google Scholar 

  46. Gonin-Laurent N, Gibaud A, Huygue M, Lefevre SH, Le Bras M, Chauveinc L et al (2006) Specific TP53 mutation pattern in radiation-induced sarcomas. Carcinogenesis 27(6):1266–1272

    Article  CAS  PubMed  Google Scholar 

  47. Manner J, Radlwimmer B, Hohenberger P, Mossinger K, Kuffer S, Sauer C et al (2010) MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol 176(1):34–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, Geyer FC, Reis-Filho JS, Mao JH et al (2011) Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type. Cancer Cell 19(5):640–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Olschowka JA, Kyrkanides S, Harvey BK, O’Banion MK, Williams JP, Rubin P et al (1997) ICAM-1 induction in the mouse CNS following irradiation. Brain Behav Immun 11(4):273–285

    Article  CAS  PubMed  Google Scholar 

  50. Zhao Y, Zhang T, Wang Y, Lu D, Du J, Feng X et al (2021) ICAM-1 orchestrates the abscopal effect of tumor radiotherapy. Proc Natl Acad Sci 118(14):e2010333118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen B, Zhao Z, Lee V, Reddy R, Stoodley M (2016) Radiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells. Int J Radiat Res 14(3):181–188

    Article  Google Scholar 

  52. Sans E, Delachanal E, Duperray A (2001) Analysis of the roles of ICAM-1 in neutrophil transmigration using a reconstituted mammalian cell expression model: implication of ICAM-1 cytoplasmic domain and Rho-dependent signaling pathway. J Immunol 166(1):544–551

    Article  CAS  PubMed  Google Scholar 

  53. Williams MR, Luscinskas FW (2011) Leukocyte rolling and adhesion via ICAM-1 signals to endothelial permeability. Focus on “Leukocyte rolling and adhesion both contribute to regulation of microvascular permeability to albumin via ligation of ICAM-1.” Am J Physiol Cell Physiol 301(4):777–779

    Article  Google Scholar 

  54. Grönloh MLB, Arts JJG, Martínez SP, van der Veen AA, Kempers L, van Steen ACI, et al. Endothelial transmigration hotspots limit vascular leakage through heterogeneous expression of ICAM1. bioRxiv. 2022:2022.01.14.476297

  55. Padmanabhan J, Gonzalez AL (2012) The effects of extracellular matrix proteins on neutrophil-endothelial interaction–a roadway to multiple therapeutic opportunities. Yale J Biol Med 85(2):167–185

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Calveley VL, Khan MA, Yeung IW, Vandyk J, Hill RP (2005) Partial volume rat lung irradiation: temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. Int J Radiat Biol 81(12):887–899

    Article  CAS  PubMed  Google Scholar 

  57. Finkelstein JN, Johnston C, Barrett T, Oberdorster G (1997) Particulate-cell interactions and pulmonary cytokine expression. Environ Health Perspect 105(Suppl 5):1179–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Olman MA, White KE, Ware LB, Cross MT, Zhu S, Matthay MA (2002) Microarray analysis indicates that pulmonary edema fluid from patients with acute lung injury mediates inflammation, mitogen gene expression, and fibroblast proliferation through bioactive interleukin-1. Chest 121(3 Suppl):69S-70S

    Article  PubMed  Google Scholar 

  59. Porter DW, Ye J, Ma J, Barger M, Robinson VA, Ramsey D et al (2002) Time course of pulmonary response of rats to inhalation of crystalline silica: NF-kappa B activation, inflammation, cytokine production, and damage. Inhal Toxicol 14(4):349–367

    Article  CAS  PubMed  Google Scholar 

  60. Sedgwick JB, Menon I, Gern JE, Busse WW (2002) Effects of inflammatory cytokines on the permeability of human lung microvascular endothelial cell monolayers and differential eosinophil transmigration. J Allergy Clin Immunol 110(5):752–756

    Article  CAS  PubMed  Google Scholar 

  61. Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D, Messa C et al (2015) Portrait of inflammatory response to ionizing radiation treatment. J Inflamm (Lond) 12:14

    Article  PubMed  Google Scholar 

  62. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604

    Article  CAS  PubMed  Google Scholar 

  63. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146

    Article  CAS  PubMed  Google Scholar 

  64. Martin M, Lefaix J, Delanian S (2000) TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47(2):277–290

    Article  CAS  PubMed  Google Scholar 

  65. Anscher MS, Crocker IR, Jirtle RL (1990) Transforming growth factor-beta 1 expression in irradiated liver. Radiat Res 122(1):77–85

    Article  CAS  PubMed  Google Scholar 

  66. Barcellos-Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol 10(9):1077–1083

    CAS  PubMed  Google Scholar 

  67. Barcellos-Hoff MH, Park C, Wright EG (2005) Radiation and the microenvironment-tumorigenesis and therapy. Nat Rev Cancer 5(11):867–875

    Article  CAS  PubMed  Google Scholar 

  68. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851

    Article  CAS  PubMed  Google Scholar 

  69. Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA (1994) Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest 93(2):892–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang J, Zheng H, Sung CC, Richter KK, Hauer-Jensen M (1998) Cellular sources of transforming growth factor-beta isoforms in early and chronic radiation enteropathy. Am J Pathol 153(5):1531–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yarnold J, Brotons MC (2010) Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 97(1):149–161

    Article  CAS  PubMed  Google Scholar 

  72. Chithra P, Sajithlal GB, Chandrakasan G (1998) Influence of Aloe vera on the glycosaminoglycans in the matrix of healing dermal wounds in rats. J Ethnopharmacol 59(3):179–186

    Article  CAS  PubMed  Google Scholar 

  73. Lefaix JL, Daburon F (1998) Diagnosis of acute localized irradiation lesions: review of the French experimental experience. Health Phys 75(4):375–384

    Article  CAS  PubMed  Google Scholar 

  74. Dracham CB, Shankar A, Madan R (2018) Radiation induced secondary malignancies: a review article. Radiat Oncol J 36(2):85–94

    Article  PubMed  PubMed Central  Google Scholar 

  75. Khanna L, Prasad SR, Yedururi S, Parameswaran AM, Marcal LP, Sandrasegaran K et al (2021) Second malignancies after radiation therapy: update on pathogenesis and cross-sectional imaging findings. Radiographics 41(3):876–894

    Article  PubMed  Google Scholar 

  76. Nepon H, Safran T, Reece EM, Murphy AM, Vorstenbosch J, Davison PG (2021) Radiation-induced tissue damage: clinical consequences and current treatment options. Semin Plast Surg 35(3):181–188

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM et al (2020) A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 20(3):174–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ejaz A, Greenberger JS, Rubin PJ (2019) Understanding the mechanism of radiation induced fibrosis and therapy options. Pharmacol Ther 204:107399

    Article  CAS  PubMed  Google Scholar 

  79. Yu G, Pang Y, Merchant M, Kesserwan C, Gangalapudi V, Abdelmaksoud A et al (2021) Tumor mutation burden, expressed neoantigens and the immune microenvironment in diffuse gliomas. Cancers (Basel). 13(23):6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kocakavuk E, Anderson KJ, Varn FS, Johnson KC, Amin SB, Sulman EP et al (2021) Radiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer. Nat Genet 53(7):1088–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang P, Chen Y, Wang C (2021) Beyond tumor mutation burden: tumor neoantigen burden as a biomarker for immunotherapy and other types of therapy. Front Oncol 11:672677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S (2019) Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 11(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  83. O’Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur C, White JM et al (2012) Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med 209(10):1869–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bao S, Jiang X, Jin S, Tu P, Lu J (2021) TGF-beta1 induces immune escape by enhancing PD-1 and CTLA-4 expression on T lymphocytes in hepatocellular carcinoma. Front Oncol 11:694145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang X, Yang L, Huang F, Zhang Q, Liu S, Ma L et al (2017) Inflammatory cytokines IL-17 and TNF-alpha up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett 184:7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y et al (2016) Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30(6):925–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Quandt D, Jasinski-Bergner S, Muller U, Schulze B, Seliger B (2014) Synergistic effects of IL-4 and TNFalpha on the induction of B7–H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J Transl Med 12:151

    Article  PubMed  PubMed Central  Google Scholar 

  89. Valero C, Lee M, Hoen D, Zehir A, Berger MF, Seshan VE et al (2021) Response rates to Anti-PD-1 immunotherapy in microsatellite-stable solid tumors with 10 or more mutations per megabase. JAMA Oncol 7(5):739–743

    Article  PubMed  Google Scholar 

  90. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M et al (2022) PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med 386(25):2363–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Solomon B, Young RJ, Bressel M, Urban D, Hendry S, Thai A et al (2018) Prognostic significance of PD-L1(+) and CD8(+) immune cells in HPV(+) oropharyngeal squamous cell carcinoma. Cancer Immunol Res 6(3):295–304

    Article  CAS  PubMed  Google Scholar 

  93. Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R et al (2018) The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother 67(3):381–392

    Article  CAS  PubMed  Google Scholar 

  94. Liu C, Zheng S, Jin R, Wang X, Wang F, Zang R et al (2020) The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett 470:95–105

    Article  CAS  PubMed  Google Scholar 

  95. Hastings K, Yu HA, Wei W, Sanchez-Vega F, DeVeaux M, Choi J et al (2019) EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann Oncol 30(8):1311–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Biton J, Mansuet-Lupo A, Pecuchet N, Alifano M, Ouakrim H, Arrondeau J et al (2018) TP53, STK11, and EGFR mutations predict tumor immune profile and the response to Anti-PD-1 in lung adenocarcinoma. Clin Cancer Res 24(22):5710–5723

    Article  CAS  PubMed  Google Scholar 

  97. Yi M, Qin S, Zhao W, Yu S, Chu Q, Wu K (2018) The role of neoantigen in immune checkpoint blockade therapy. Exp Hematol Oncol 7:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yi M, Li A, Zhou L, Chu Q, Luo S, Wu K (2021) Immune signature-based risk stratification and prediction of immune checkpoint inhibitor’s efficacy for lung adenocarcinoma. Cancer Immunol Immunother 70(6):1705–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thompson JC, Hwang WT, Davis C, Deshpande C, Jeffries S, Rajpurohit Y et al (2020) Gene signatures of tumor inflammation and epithelial-to-mesenchymal transition (EMT) predict responses to immune checkpoint blockade in lung cancer with high accuracy. Lung Cancer 139:1–8

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.A., M.R., D.K. and Z.M. conceptualize and wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zachary S. Morris.

Ethics declarations

Conflict of interest

Z. Morris declares that he is on the Scientific Advisory Board for Archeus Technologies and for Seneca Therapeutics. No disclosures were reported by the other authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atajanova, T., Rahman, M.M., Konieczkowski, D.J. et al. Radiation-associated secondary malignancies: a novel opportunity for applying immunotherapies. Cancer Immunol Immunother 72, 3445–3452 (2023). https://doi.org/10.1007/s00262-023-03532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03532-1

Keywords

Navigation