Skip to main content

Advertisement

Log in

A novel agonist of 4-1BB costimulatory receptor shows therapeutic efficacy against a tobacco carcinogen-induced lung cancer

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunotherapy utilizing checkpoint inhibitors has shown remarkable success in the treatment of cancers. In addition to immune checkpoint inhibitors, immune co-stimulation has the potential to enhance immune activation and destabilize the immunosuppressive tumor microenvironment. CD137, also known as 4-1BB, is one of the potent immune costimulatory receptors that could be targeted for effective immune co-stimulation. The interaction of the 4-1BB receptor with its natural ligand (4-1BBL) generates a strong costimulatory signal for T cell proliferation and survival. 4-1BBL lacks costimulatory activity in soluble form. To obtain co-stimulatory activity in soluble form, a recombinant 4-1BBL protein was generated by fusing the extracellular domains of murine 4-1BBL to a modified version of streptavidin (SA-4-1BBL). Treatment with SA-4-1BBL inhibited the development of lung tumors in A/J mice induced by weekly injections of the tobacco carcinogen NNK for eight weeks. The inhibition was dependent on the presence of T cells and NK cells; depletion of these cells diminished the SA-4-1BBL antitumor protective effect. The number of lung tumor nodules was significantly reduced by the administration of SA-4-1BBL to mice during ongoing exposure to NNK. The data presented in this paper suggest that utilizing an immune checkpoint stimulator as a single agent generate a protective immune response against lung cancer in the presence of a carcinogen. More broadly, this study suggests that immune checkpoint stimulation can be extended to a number of other cancer types, including breast and prostate cancers, for which improved diagnostics can detect disease at the preneoplastic stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

SA-4-1BBL protein is available through a material transfer agreement with the University of Missouri, Columbia, MO.

Abbreviations

H&E:

Hematoxylin and eosin

IHC:

Immunohistochemical staining

NNK:

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone

PCNA:

Proliferating cell nuclear antigen

DMSO:

Dimethyl sulfide

SA:

Streptavidin

s.c.:

Subcutaneous injection

i.p.:

Intraperitoneal injection

PD-1:

Programmed cell death protein-1

PD-L1:

Programmed death-ligand 1

IFNγ:

Interferon γ

References

  1. Siegel RL et al (2023) Cancer statistics. CA Cancer J Clin 73(1):17–48

    Article  PubMed  Google Scholar 

  2. Bray F et al (2012) Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol 13(8):790–801

    Article  PubMed  Google Scholar 

  3. Morrissey KM et al (2016) Immunotherapy and novel combinations in oncology: current landscape, challenges, and opportunities. Clin Transl Sci 9(2):89–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Donnell JS, Teng MWL, Smyth MJ (2019) Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 16(3):151–167

    Article  CAS  PubMed  Google Scholar 

  5. Yu L et al (2021) Opportunities and obstacles of targeted therapy and immunotherapy in small cell lung cancer. J Drug Target 29(1):1–11

    Article  CAS  PubMed  Google Scholar 

  6. Melero I et al (1998) NK1.1 cells express 4–1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4–1BB monoclonal antibodies. Cell Immunol 190(2):167–172

    Article  CAS  PubMed  Google Scholar 

  7. Martin AL et al (2023) Anti-4-1BB immunotherapy enhances systemic immune effects of radiotherapy to induce B and T cell-dependent anti-tumor immune activation and improve tumor control at unirradiated sites. Cancer Immunol Immunother 72(6):1445–1460

    Article  CAS  PubMed  Google Scholar 

  8. Sharma RK, Yolcu ES, Shirwan H (2014) SA-4-1BBL as a novel adjuvant for the development of therapeutic cancer vaccines. Expert Rev Vaccines 13(3):387–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamata-Sakurai M et al (2021) Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation. Cancer Discov 11(1):158–175

    Article  CAS  PubMed  Google Scholar 

  10. Segal NH et al (2017) Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res 23(8):1929–1936

    Article  CAS  PubMed  Google Scholar 

  11. Rabu C et al (2005) Production of recombinant human trimeric CD137L (4–1BBL) Cross-linking is essential to its T cell co-stimulation activity. J Biol Chem 280(50):41472–41481

    Article  CAS  PubMed  Google Scholar 

  12. Bitra A et al (2019) Crystal structure of the m4–1BB/4-1BBL complex reveals an unusual dimeric ligand that undergoes structural changes upon 4–1BB receptor binding. J Biol Chem 294(6):1831–1845

    Article  CAS  PubMed  Google Scholar 

  13. Schabowsky RH et al (2009) A novel form of 4–1BBL has better immunomodulatory activity than an agonistic anti-4-1BB Ab without Ab-associated severe toxicity. Vaccine 28(2):512–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barsoumian HB, Yolcu ES, Shirwan H (2016) 4–1BB signaling in conventional t cells drives IL-2 production that overcomes CD4+CD25+FOXP3+ t regulatory cell suppression. PLoS ONE 11(4):e0153088

    Article  PubMed  PubMed Central  Google Scholar 

  15. Srivastava AK et al (2014) SA-4-1BBL and monophosphoryl lipid A constitute an efficacious combination adjuvant for cancer vaccines. Cancer Res 74(22):6441–6451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharma RK et al (2013) CD4+ T cells play a critical role in the generation of primary and memory antitumor immune responses elicited by SA-4-1BBL and TAA-based vaccines in mouse tumor models. PLoS ONE 8(9):e73145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Madireddi S et al (2012) SA-4-1BBL costimulation inhibits conversion of conventional CD4+ T cells into CD4+ FoxP3+ T regulatory cells by production of IFN-gamma. PLoS ONE 7(8):e42459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srivastava AK et al (2012) Prime-boost vaccination with SA-4-1BBL costimulatory molecule and survivin eradicates lung carcinoma in CD8+ T and NK cell dependent manner. PLoS ONE 7(11):e48463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharma RK et al (2010) SA-4-1BBL as the immunomodulatory component of a HPV-16 E7 protein based vaccine shows robust therapeutic efficacy in a mouse cervical cancer model. Vaccine 28(36):5794–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharma RK et al (2010) 4–1BB ligand as an effective multifunctional immunomodulator and antigen delivery vehicle for the development of therapeutic cancer vaccines. Cancer Res 70(10):3945–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharma RK et al (2009) Costimulation as a platform for the development of vaccines: a peptide-based vaccine containing a novel form of 4–1BB ligand eradicates established tumors. Cancer Res 69(10):4319–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barsoumian HB et al (2019) A novel form of 4–1BBL prevents cancer development via nonspecific activation of CD4(+) T and natural killer cells. Cancer Res 79(4):783–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nikitin AY et al (2004) Classification of proliferative pulmonary lesions of the mouse: recommendations of the mouse models of human cancers consortium. Cancer Res 64(7):2307–2316

    Article  CAS  PubMed  Google Scholar 

  24. Kim JH et al (2004) Inhibitory effects of 7-hydroxy-3-methoxy-cadalene on 4-(methylinitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice. Cancer Lett 213(2):139–145

    Article  CAS  PubMed  Google Scholar 

  25. Salehinejad J et al (2011) Immunohistochemical detection of p53 and PCNA in ameloblastoma and adenomatoid odontogenic tumor. J Oral Sci 53(2):213–217

    Article  CAS  PubMed  Google Scholar 

  26. Patlolla JM et al (2013) beta-Escin inhibits NNK-induced lung adenocarcinoma and ALDH1A1 and RhoA/Rock expression in A/J mice and growth of H460 human lung cancer cells. Cancer Prev Res (Phila) 6(10):1140–1149

    Article  CAS  PubMed  Google Scholar 

  27. Galitovskiy V et al (2013) Development of novel approach to diagnostic imaging of lung cancer with (18)F-Nifene PET/CT using A/J mice treated with NNK. J Cancer Res Ther (Manch) 1(4):128–137

    Article  CAS  PubMed  Google Scholar 

  28. Stabile LP et al (2021) Syngeneic tobacco carcinogen-induced mouse lung adenocarcinoma model exhibits PD-L1 expression and high tumor mutational burden. JCI Insight. https://doi.org/10.1172/jci.insight.145307

    Article  PubMed  PubMed Central  Google Scholar 

  29. Narayanapillai SC et al (2020) Modulation of the PD-1/PD-L1 immune checkpoint axis during inflammation-associated lung tumorigenesis. Carcinogenesis 41(11):1518–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carlino MS, Larkin J, Long GV (2021) Immune checkpoint inhibitors in melanoma. Lancet 398(10304):1002–1014

    Article  CAS  PubMed  Google Scholar 

  31. Tran L et al (2021) Advances in bladder cancer biology and therapy. Nat Rev Cancer 21(2):104–121

    Article  CAS  PubMed  Google Scholar 

  32. Diaz-Montero CM, Rini BI, Finke JH (2020) The immunology of renal cell carcinoma. Nat Rev Nephrol 16(12):721–735

    Article  PubMed  Google Scholar 

  33. Leemans CR, Snijders PJF, Brakenhoff RH (2018) The molecular landscape of head and neck cancer. Nat Rev Cancer 18(5):269–282

    Article  CAS  PubMed  Google Scholar 

  34. Connors JM et al (2020) Hodgkin lymphoma. Nat Rev Dis Primers 6(1):61

    Article  PubMed  Google Scholar 

  35. Gettinger SN et al (2015) Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol 33(18):2004–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rizvi NA et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16(3):257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hatic H, Sampat D, Goyal G (2021) Immune checkpoint inhibitors in lymphoma: challenges and opportunities. Ann Transl Med 9(12):1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao D et al (2021) Opportunities and challenges in targeted therapy and immunotherapy for pancreatic cancer. Expert Rev Mol Med 23:e21

    Article  CAS  PubMed  Google Scholar 

  39. Onoi K et al (2020) Immune checkpoint inhibitors for lung cancer treatment: a review. J Clin Med 9(5):1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yap TA et al (2021) Development of immunotherapy combination strategies in cancer. Cancer Discov 11(6):1368–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu WD et al (2019) Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett 452:66–70

    Article  CAS  PubMed  Google Scholar 

  42. Gotwals P et al (2017) Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer 17(5):286–301

    Article  CAS  PubMed  Google Scholar 

  43. Chester C et al (2018) Immunotherapy targeting 4–1BB: mechanistic rationale, clinical results, and future strategies. Blood 131(1):49–57

    Article  CAS  PubMed  Google Scholar 

  44. Etxeberria I et al (2020) New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open 4(Suppl 3):e000733

    PubMed  PubMed Central  Google Scholar 

  45. Sharma RK et al (2010) Tumor cells engineered to codisplay on their surface 4–1BBL and LIGHT costimulatory proteins as a novel vaccine approach for cancer immunotherapy. Cancer Gene Ther 17(10):730–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank The NextGen Precision Health Building, at the University of Missouri-Columbia for providing advanced core facilities. The authors also thank Dr. Christa Jackson for her critical reading of the manuscript

Funding

This study was supported by the Department of Defense (DoD) grant number LC190524.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design were done by ESY and HS. AEG, RR, MT and VU performed the experiments. AEG, RR and MT analyzed data and prepared Figs. 1, 2, 3 and 4. ESY, HS and AEG wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Haval Shirwan or Esma S. Yolcu.

Ethics declarations

Conflict of interest

H.S. is CEO of Fascure Therapeutics, LLC, and the Scientific Co-Founder, stockholder, and member of SAB for iTolerance, Inc. E.S.Y. is a consultant for iTolerance. The remaining authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulen, A.E., Rudraboina, R., Tarique, M. et al. A novel agonist of 4-1BB costimulatory receptor shows therapeutic efficacy against a tobacco carcinogen-induced lung cancer. Cancer Immunol Immunother 72, 3567–3579 (2023). https://doi.org/10.1007/s00262-023-03507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03507-2

Keywords

Navigation