Skip to main content

Advertisement

Log in

Role of single-cell ferroptosis regulation in intercellular communication and skin cutaneous melanoma progression and immunotherapy

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

The involvement of ferroptosis in the pathogenesis and progression of various cancers has been well established. However, limited studies have investigated the role of ferroptosis-mediated tumor microenvironment (TME) in skin cutaneous melanoma (SKCM).

Methods

By leveraging single-cell RNA sequencing data, the nonnegative matrix factorization (NMF) approach was employed to comprehensively characterize and identify distinct gene signatures within ferroptosis-associated TME cell clusters. Prognostic and treatment response analyses were conducted using both bulk datasets and external cancer cohort to evaluate the clinical implications of TME clusters.

Results

This NMF-based analysis successfully delineated fibroblasts, macrophages, T cells, and B cells into multiple clusters, enabling the identification of unique gene expression patterns and the annotation of distinct TME clusters. Furthermore, pseudotime trajectories, enrichment analysis, cellular communication analysis, and gene regulatory network analysis collectively demonstrated significant intercellular communication between key TME cell clusters, thereby influencing tumor cell development through diverse mechanisms. Importantly, our bulk RNA-seq analysis revealed the prognostic significance of ferroptosis-mediated TME cell clusters in SKCM patients. Moreover, our analysis of immune checkpoint blockade highlighted the crucial role of TME cell clusters in tumor immunotherapy, facilitating the discovery of potential immunotherapeutic targets.

Conclusions

In conclusion, this pioneering study employing NMF-based analysis unravels the intricate cellular communication mediated by ferroptosis within the TME and its profound implications for the pathogenesis and progression of SKCM. We provide compelling evidence for the prognostic value of ferroptosis-regulated TME cell clusters in SKCM, as well as their potential as targets for immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Publicly available datasets were analyzed in this study. These data can be found here: The datasets analyzed in the current study are available in the GEO and TCGA database. All raw data and original images can be found in the jianguoyun (https://www.jianguoyun.com/p/DYLfxGkQjpbCCxit5JAFIAA).

References

  1. Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Basset-Seguin N, Bastholt L, Bataille V, Del Marmol V, Dréno B et al (2022) European consensus-based interdisciplinary guideline for melanoma. Part 1: diagnostics update 2022. Eur J Cancer. 170:236–255. https://doi.org/10.1016/j.ejca.2022.03.008

    Article  PubMed  Google Scholar 

  2. Arnold M, Singh D, Laversanne M, Vignat J, Vaccarella S, Meheus F, Cust AE, de Vries E, Whiteman DC, Bray F (2022) Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. https://doi.org/10.1001/jamadermatol.2022.0160

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hassannia B, Vandenabeele P, Vanden BT (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35:830–849. https://doi.org/10.1016/j.ccell.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  4. Koppula P, Zhuang L, Gan B (2021) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 12:599–620. https://doi.org/10.1007/s13238-020-00789-5

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, Sirohi K, Li X, Wei Y, Lee H et al (2018) BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20:1181–1192. https://doi.org/10.1038/s41556-018-0178-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62. https://doi.org/10.1038/nature14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Talty R, Bosenberg M (2022) The role of ferroptosis in melanoma. Pigment Cell Melanoma Res 35:18–25. https://doi.org/10.1111/pcmr.13009

    Article  PubMed  Google Scholar 

  8. Liu C, Liu Y, Yu Y, Zhao Y, Yu A (2022) Comprehensive analysis of ferroptosis-related genes and prognosis of cutaneous melanoma. BMC Med Genomics 15:39. https://doi.org/10.1186/s12920-022-01194-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ping S, Wang S, Zhao Y, He J, Li G, Li D, Wei Z, Chen J (2022) Identification and validation of a ferroptosis-related gene signature for predicting survival in skin cutaneous melanoma. Cancer Med 11:3529–3541. https://doi.org/10.1002/cam4.4706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duro-Sánchez S, Alonso MR, Arribas J (2023) Immunotherapies against HER2-positive breast cancer. Cancers (Basel) 15:1069. https://doi.org/10.3390/cancers15041069

    Article  CAS  PubMed  Google Scholar 

  11. Wang D, Han Y, Peng L, Huang T, He X, Wang J, Ou C (2023) Crosstalk between N6-methyladenosine (m6A) modification and noncoding RNA in tumor microenvironment. Int J Biol Sci 19:2198–2219. https://doi.org/10.7150/ijbs.79651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Biffi G, Tuveson DA (2021) Diversity and biology of cancer-associated fibroblasts. Physiol Rev 101:147–176. https://doi.org/10.1152/physrev.00048.2019

    Article  CAS  PubMed  Google Scholar 

  13. Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X (2020) Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater. https://doi.org/10.1002/adma.202002054

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oh DY, Fong L (2021) Cytotoxic CD4+ T cells in cancer: expanding the immune effector toolbox. Immunity 54:2701–2711. https://doi.org/10.1016/j.immuni.2021.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yazdanifar M, Barbarito G, Bertaina A, Airoldi I (2020) γδ T cells: the ideal tool for cancer immunotherapy. Cells 9:1305. https://doi.org/10.3390/cells9051305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Engelhard V, Conejo-Garcia JR, Ahmed R, Nelson BH, Willard-Gallo K, Bruno TC, Fridman WH (2021) B cells and cancer. Cancer Cell 39:1293–1296. https://doi.org/10.1016/j.ccell.2021.09.007

    Article  CAS  PubMed  Google Scholar 

  17. Michaud D, Steward CR, Mirlekar B, Pylayeva-Gupta Y (2021) Regulatory B cells in cancer. Immunol Rev 299:74–92. https://doi.org/10.1111/imr.12939

    Article  CAS  PubMed  Google Scholar 

  18. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE, Koeppen H, Astarita JL, Cubas R et al (2018) TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544–548. https://doi.org/10.1038/nature25501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Galbo PM, Zang X, Zheng D (2021) Molecular features of cancer-associated fibroblast subtypes and their implication on cancer pathogenesis, prognosis, and immunotherapy resistance. Clin Cancer Res 27:2636–2647. https://doi.org/10.1158/1078-0432.CCR-20-4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeng H, You C, Zhao L, Wang J, Ye X, Yang T, Wan C, Deng L (2021) Ferroptosis-associated classifier and indicator for prognostic prediction in cutaneous melanoma. J Oncol 2021:3658196. https://doi.org/10.1155/2021/3658196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Y, Shou Y, Zhu R, Qiu Z, Zhang Q, Xu J (2022) Construction and validation of a ferroptosis-related prognostic signature for melanoma based on single-cell RNA sequencing. Front Cell Dev Biol. 10:818457. https://doi.org/10.3389/fcell.2022.818457

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen Y, Zhu S, Liu T, Zhang S, Lu J, Fan W, Lin L, Xiang T, Yang J, Zhao X et al (2023) Epithelial cells activate fibroblasts to promote esophageal cancer development. Cancer Cell 41:903-918.e8. https://doi.org/10.1016/j.ccell.2023.03.001

    Article  CAS  PubMed  Google Scholar 

  23. Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, Liu Q, Dou R, Xiong B (2019) Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer 18:64. https://doi.org/10.1186/s12943-019-0976-4

    Article  PubMed  PubMed Central  Google Scholar 

  24. de Waal AM, Hiemstra PS, Ottenhoff TH, Joosten SA, van der Does AM (2022) Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax 77:408–416. https://doi.org/10.1136/thoraxjnl-2021-217997

    Article  PubMed  Google Scholar 

  25. Angelopoulou E, Piperi C (2018) Emerging role of plexins signaling in glioma progression and therapy. Cancer Lett 414:81–87. https://doi.org/10.1016/j.canlet.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  26. Toledano S, Nir-Zvi I, Engelman R, Kessler O, Neufeld G (2019) Class-3 semaphorins and their receptors: potent multifunctional modulators of tumor progression. Int J Mol Sci 20:556. https://doi.org/10.3390/ijms20030556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tamagnone L (2012) Emerging role of semaphorins as major regulatory signals and potential therapeutic targets in cancer. Cancer Cell 22:145–152. https://doi.org/10.1016/j.ccr.2012.06.031

    Article  CAS  PubMed  Google Scholar 

  28. Worzfeld T, Offermanns S (2014) Semaphorins and plexins as therapeutic targets. Nat Rev Drug Discov 13:603–621. https://doi.org/10.1038/nrd4337

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Klamer B, Li J, Fernandez S, Li L (2020) A pan-cancer study of class-3 semaphorins as therapeutic targets in cancer. BMC Med Genomics 13:45. https://doi.org/10.1186/s12920-020-0682-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nwabo Kamdje AH, Seke Etet PF, Kipanyula MJ, Vecchio L, Tagne Simo R, Njamnshi AK, Lukong KE, Mimche PN (2022) Insulin-like growth factor-1 signaling in the tumor microenvironment: carcinogenesis, cancer drug resistance, and therapeutic potential. Front Endocrinol (Lausanne). 13:927390. https://doi.org/10.3389/fendo.2022.927390

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fettig LM, Yee D (2020) Advances in insulin-like growth factor biology and -directed cancer therapeutics. Adv Cancer Res 147:229–257. https://doi.org/10.1016/bs.acr.2020.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parsons MJ, Tammela T, Dow LE (2021) WNT as a driver and dependency in cancer. Cancer Discov 11:2413–2429. https://doi.org/10.1158/2159-8290.CD-21-0190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jian S, Luo D, Wang Y, Xu W, Zhang H, Zhang L, Zhou X (2021) MiR-337-3p confers protective effect on facet joint osteoarthritis by targeting SKP2 to inhibit DUSP1 ubiquitination and inactivate MAPK pathway. Cell Biol Toxicol. https://doi.org/10.1007/s10565-021-09665-2

    Article  PubMed  Google Scholar 

  34. Shen J, Xing W, Liu R, Zhang Y, Xie C, Gong F (2019) MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol 20:21. https://doi.org/10.1186/s12867-019-0135-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li L, Yang M, Yu J, Cheng S, Ahmad M, Wu C, Wan X, Xu B, Ben-David Y, Luo H (2022) A novel L-phenylalanine dipeptide inhibits the growth and metastasis of prostate cancer cells via targeting DUSP1 and TNFSF9. Int J Mol Sci 23:10916. https://doi.org/10.3390/ijms231810916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pan W, Han J, Wei N, Wu H, Wang Y, Sun J (2022) LINC00702-mediated DUSP1 transcription in the prevention of bladder cancer progression: Implications in cancer cell proliferation and tumor inflammatory microenvironment. Genomics. 114:110428. https://doi.org/10.1016/j.ygeno.2022.110428

    Article  CAS  PubMed  Google Scholar 

  37. Huang C, Zhan L (2022) Network pharmacology identifies therapeutic targets and the mechanisms of glutathione action in ferroptosis occurring in oral cancer. Front Pharmacol. 13:851540. https://doi.org/10.3389/fphar.2022.851540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deng H, Lin Y, Gan F, Li B, Mou Z, Qin X, He X, Meng Y (2022) Prognostic model and immune infiltration of ferroptosis subcluster-related modular genes in gastric cancer. J Oncol 2022:5813522. https://doi.org/10.1155/2022/5813522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen X, Yu C, Kang R, Kroemer G, Tang D (2021) Cellular degradation systems in ferroptosis. Cell Death Differ 28:1135–1148. https://doi.org/10.1038/s41418-020-00728-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J, Zhou H (2018) DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 14:576–587. https://doi.org/10.1016/j.redox.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  41. Ji J, Liu Z, Hong X, Liu Z, Gao J, Liu J (2020) Protective effects of rolipram on endotoxic cardiac dysfunction via inhibition of the inflammatory response in cardiac fibroblasts. BMC Cardiovasc Disord 20:242. https://doi.org/10.1186/s12872-020-01529-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blumer S, Fang L, Chen W-C, Khan P, Hostettler K, Tamm M, Roth M, Lambers C (2021) IPF-fibroblast Erk1/2 activity is independent from microRNA cluster 17–92 but can be inhibited by treprostinil through DUSP1. Cells 10:2836. https://doi.org/10.3390/cells10112836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peng H-Z, Yun Z, Wang W, Ma B-A (2017) Dual specificity phosphatase 1 has a protective role in osteoarthritis fibroblast-like synoviocytes via inhibition of the MAPK signaling pathway. Mol Med Rep 16:8441–8447. https://doi.org/10.3892/mmr.2017.7617

    Article  CAS  PubMed  Google Scholar 

  44. Ramkissoon A, Chaney KE, Milewski D, Williams KB, Williams RL, Choi K, Miller A, Kalin TV, Pressey JG, Szabo S et al (2019) Targeted inhibition of the dual specificity phosphatases DUSP1 and DUSP6 suppress MPNST growth via JNK. Clin Cancer Res 25:4117–4127. https://doi.org/10.1158/1078-0432.CCR-18-3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang L, Gao S, Shi X, Chen Y, Wei S, Mi Y, Zuo L, Qi C (2023) NUPR1 imparts oncogenic potential in bladder cancer. Cancer Med 12:7149–7163. https://doi.org/10.1002/cam4.5518

    Article  CAS  PubMed  Google Scholar 

  46. Fan T, Wang X, Zhang S, Deng P, Jiang Y, Liang Y, Jie S, Wang Q, Li C, Tian G et al (2022) NUPR1 promotes the proliferation and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy. Signal Transduct Target Ther 7:130. https://doi.org/10.1038/s41392-022-00939-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang L, Wang W, Li Z, Zhao Y, Qin Z (2021) NUPR1 participates in YAP-mediate gastric cancer malignancy and drug resistance via AKT and p21 activation. J Pharm Pharmacol 73:740–748. https://doi.org/10.1093/jpp/rgab010

    Article  PubMed  Google Scholar 

  48. Dai Q, Wu W, Amei A, Yan X, Lu L, Wang Z (2021) Regulation and characterization of tumor-infiltrating immune cells in breast cancer. Int Immunopharmacol. 90:107167. https://doi.org/10.1016/j.intimp.2020.107167

    Article  CAS  PubMed  Google Scholar 

  49. Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, Sell A, Wei S, Grove S, Johnson JK et al (2022) CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 40:365-378.e6. https://doi.org/10.1016/j.ccell.2022.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A et al (2019) CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569:270–274. https://doi.org/10.1038/s41586-019-1170-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dolina JS, Van Braeckel-Budimir N, Thomas GD, Salek-Ardakani S (2021) CD8+ T cell exhaustion in cancer. Front Immunol. 12:715234. https://doi.org/10.3389/fimmu.2021.715234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Raskov H, Orhan A, Christensen JP, Gögenur I (2021) Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer 124:359–367. https://doi.org/10.1038/s41416-020-01048-4

    Article  CAS  PubMed  Google Scholar 

  53. Kanai Y (2022) Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol Ther. 230:107964. https://doi.org/10.1016/j.pharmthera.2021.107964

    Article  CAS  PubMed  Google Scholar 

  54. Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding H-F, Zhang J, Wang H, Chen X et al (2020) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ 27:662–675. https://doi.org/10.1038/s41418-019-0380-z

    Article  CAS  PubMed  Google Scholar 

  55. Ding Y, Chen X, Liu C, Ge W, Wang Q, Hao X, Wang M, Chen Y, Zhang Q (2021) Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol 14:19. https://doi.org/10.1186/s13045-020-01016-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu Z, Xu Y, Liu X, Wang B (2022) PCDH7 knockdown potentiates colon cancer cells to chemotherapy via inducing ferroptosis and changes in autophagy through restraining MEK1/2/ERK/c-Fos axis. Biochem Cell Biol 100:445–457. https://doi.org/10.1139/bcb-2021-0513

    Article  CAS  PubMed  Google Scholar 

  57. Ishikawa C, Senba M, Mori N (2020) Evaluation of artesunate for the treatment of adult T-cell leukemia/lymphoma. Eur J Pharmacol. 872:172953. https://doi.org/10.1016/j.ejphar.2020.172953

    Article  CAS  PubMed  Google Scholar 

  58. Wei T-T, Zhang M-Y, Zheng X-H, Xie T-H, Wang W, Zou J, Li Y, Li H-Y, Cai J, Wang X et al (2022) Interferon-γ induces retinal pigment epithelial cell Ferroptosis by a JAK1-2/STAT1/SLC7A11 signaling pathway in age-related macular degeneration. FEBS J 289:1968–1983. https://doi.org/10.1111/febs.16272

    Article  CAS  PubMed  Google Scholar 

  59. Zhong Y, Zhang W, Yu H, Lin L, Gao X, He J, Li D, Chen Y, Zeng Z, Xu Y et al (2022) Multi-platform-based characterization of ferroptosis in human colorectal cancer. iScience. 25:104750. https://doi.org/10.1016/j.isci.2022.104750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen Z, Gu Q, Chen R (2023) Promotive role of IRF7 in ferroptosis of colonic epithelial cells in ulcerative colitis by the miR-375-3p/SLC11A2 axis. Biomol Biomed 23:437–449. https://doi.org/10.17305/bjbms.2022.8081

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu J, Ren Z, Yang L, Zhu L, Li Y, Bie C, Liu H, Ji Y, Chen D, Zhu M et al (2022) The NSUN5-FTH1/FTL pathway mediates ferroptosis in bone marrow-derived mesenchymal stem cells. Cell Death Discov 8:99. https://doi.org/10.1038/s41420-022-00902-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ke S, Wang C, Su Z, Lin S, Wu G (2022) Integrated analysis reveals critical ferroptosis regulators and FTL contribute to cancer progression in hepatocellular carcinoma. Front Genet. 13:897683. https://doi.org/10.3389/fgene.2022.897683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang L, Chen Z, Xu A (2017) FTL: a novel predictor in gastric cancer. Int J Clin Exp Pathol 10:7865–7872

    PubMed  PubMed Central  Google Scholar 

  64. Liu J, Gao L, Zhan N, Xu P, Yang J, Yuan F, Xu Y, Cai Q, Geng R, Chen Q (2020) Hypoxia induced ferritin light chain (FTL) promoted epithelia mesenchymal transition and chemoresistance of glioma. J Exp Clin Cancer Res 39:137. https://doi.org/10.1186/s13046-020-01641-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (82072182, 82002061).

Author information

Authors and Affiliations

Authors

Contributions

BYS, YZ, and YP conceptualized and designed the study; BYS, WL, and YZ contributed to data curation and methodology; BYS, YP, KW, and ZC analyzed and interpreted the data; BYS wrote the manuscript; and BQS reviewed the manuscript and took part in study supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Baoqiang Song.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

262_2023_3504_MOESM1_ESM.pdf

Supplemental Figure 1 A–I Results of K–M survival analysis of NMF cells clusters in the external dataset of bladder cancer. The survival analysis of each high and low NMF cell cluster grouping in bladder cancer was significantly different (p < 0.05) (PDF 514 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Peng, Y., Zheng, Y. et al. Role of single-cell ferroptosis regulation in intercellular communication and skin cutaneous melanoma progression and immunotherapy. Cancer Immunol Immunother 72, 3523–3541 (2023). https://doi.org/10.1007/s00262-023-03504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03504-5

Keywords

Navigation