Skip to main content

Advertisement

Log in

CD24 is a novel target of chimeric antigen receptor T cells for the treatment of triple negative breast cancer

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Triple negative breast cancer (TNBC) is a subtype of breast cancer with the highest degree of malignancy and the worst prognosis. The application of immunotherapy for TNBC is limited. This study was to verify the potential application of chimeric antigen receptor-T cells (CAR-T cells) targeting CD24 named as 24BBz in treatment of TNBC. 24BBz was constructed by lentivirus infection and then was co-culture with breast cancer cell lines to evaluate the activation, proliferation and cytotoxicity of engineered T cells. The anti-tumor activity of 24BBz was verified in the subcutaneous xenograft model of nude mice. We found that CD24 gene was significantly up-regulated in breast cancer (BRCA), especially in TNBC. 24BBz showed antigen-specific activation and dose-dependent cytotoxicity against CD24-positive BRCA tumor cells in vitro. Furthermore, 24BBz showed significant anti-tumor effect in CD24-positive TNBC xenografts and T cells infiltration in tumor tissues, while some T cells exhibited exhaustion. No pathological damage of major organs was found during the treatment. This study proved that CD24-specific CAR-T cells have potent anti-tumor activity and potential application value in treatment of TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available on reasonable request.

References

  1. Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G (2021) Breast cancer. Lancet (London, England) 397(10286):1750–1769. https://doi.org/10.1016/s0140-6736(20)32381-3

    Article  CAS  PubMed  Google Scholar 

  2. Bianchini G, De Angelis C, Licata L, Gianni L (2022) Treatment landscape of triple-negative breast cancer-expanded options, evolving needs. Nat Rev Clin Oncol 19(2):91–113. https://doi.org/10.1038/s41571-021-00565-2

    Article  CAS  PubMed  Google Scholar 

  3. Hua Z, White J, Zhou J (2022) Cancer stem cells in TNBC. Semin Cancer Biol 82:26–34. https://doi.org/10.1016/j.semcancer.2021.06.015

    Article  CAS  PubMed  Google Scholar 

  4. Garrido-Castro AC, Lin NU, Polyak K (2019) Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov 9(2):176–198. https://doi.org/10.1158/2159-8290.Cd-18-1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He MY et al (2018) Radiotherapy in triple-negative breast cancer: current situation and upcoming strategies. Crit Rev Oncol Hematol 131:96–101. https://doi.org/10.1016/j.critrevonc.2018.09.004

    Article  PubMed  Google Scholar 

  6. Nedeljković M, Damjanović A (2019) Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells. https://doi.org/10.3390/cells8090957

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jabbarzadeh Kaboli P et al (2022) Shedding light on triple-negative breast cancer with Trop2-targeted antibody-drug conjugates. Am J Cancer Res 12(4):1671–1685

    PubMed  PubMed Central  Google Scholar 

  8. Kristiansen G et al (2003) CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9(13):4906–4913

    CAS  PubMed  Google Scholar 

  9. Pirruccello SJ, LeBien TW (1986) The human B cell-associated antigen CD24 is a single chain sialoglycoprotein. J Immunol (Baltimore, md.: 1950) 136(10):3779–3784

    Article  CAS  Google Scholar 

  10. Tarhriz V et al (2019) Overview of CD24 as a new molecular marker in ovarian cancer. J Cell Physiol 234(3):2134–2142. https://doi.org/10.1002/jcp.27581

    Article  CAS  PubMed  Google Scholar 

  11. Barkal AA et al (2019) CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572(7769):392–396. https://doi.org/10.1038/s41586-019-1456-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baumann P et al (2012) CD24 interacts with and promotes the activity of c-src within lipid rafts in breast cancer cells, thereby increasing integrin-dependent adhesion. Cell Mol Life Sci 69(3):435–448. https://doi.org/10.1007/s00018-011-0756-9

    Article  CAS  PubMed  Google Scholar 

  13. Kwon MJ et al (2015) CD24 overexpression is associated with poor prognosis in luminal a and triple-negative breast cancer. PLoS ONE 10(10):e0139112. https://doi.org/10.1371/journal.pone.0139112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chan SH et al (2019) Identification of the novel role of CD24 as an oncogenesis regulator and therapeutic target for triple-negative breast cancer. Mol Cancer Ther 18(1):147–161. https://doi.org/10.1158/1535-7163.Mct-18-0292

    Article  CAS  PubMed  Google Scholar 

  15. Deng X et al (2017) CD24 Expression and differential resistance to chemotherapy in triple-negative breast cancer. Oncotarget 8(24):38294–38308. https://doi.org/10.18632/oncotarget.16203

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jing X et al (2018) CD24 is a potential biomarker for prognosis in human breast carcinoma. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 48(1):111–119. https://doi.org/10.1159/000491667

    Article  CAS  Google Scholar 

  17. Maliar A et al (2012) Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 143(5):1375-1384.e1375. https://doi.org/10.1053/j.gastro.2012.07.017

    Article  CAS  PubMed  Google Scholar 

  18. Sun F et al (2021) Bispecific CAR-T cells targeting both BCMA and CD24: a potentially treatment approach for multiple myeloma. Blood 138:2802

    Article  Google Scholar 

  19. Sun F et al (2017) Engineering a high-affinity humanized anti-CD24 antibody to target hepatocellular carcinoma by a novel CDR grafting design. Oncotarget 8(31):51238–51252. https://doi.org/10.18632/oncotarget.17228

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jayaraman J et al (2020) CAR-T design: elements and their synergistic function. EBioMedicine 58:102931. https://doi.org/10.1016/j.ebiom.2020.102931

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu N et al (2021) STING agonist promotes CAR T cell trafficking and persistence in breast cancer. J Exp Med. https://doi.org/10.1084/jem.20200844

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liedtke C et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26(8):1275–1281. https://doi.org/10.1200/jco.2007.14.4147

    Article  PubMed  Google Scholar 

  23. Zhao Z, Chen Y, Francisco NM, Zhang Y, Wu M (2018) The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm Sin B 8(4):539–551. https://doi.org/10.1016/j.apsb.2018.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xia L et al (2020) EGFR-targeted CAR-T cells are potent and specific in suppressing triple-negative breast cancer both in vitro and in vivo. Clin Transl Immunol 9(5):e01135. https://doi.org/10.1002/cti2.1135

    Article  CAS  Google Scholar 

  25. Corti C et al (2022) CAR-T cell therapy for triple-negative breast cancer and other solid tumors: preclinical and clinical progress. Expert Opin Investig Drugs 31(6):593–605. https://doi.org/10.1080/13543784.2022.2054326

    Article  CAS  PubMed  Google Scholar 

  26. Tchou J et al (2017) Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res 5(12):1152–1161. https://doi.org/10.1158/2326-6066.Cir-17-0189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamashita N et al (2021) MUC1-C integrates activation of the IFN-γ pathway with suppression of the tumor. J Immunother Cancer 9:1

    Article  Google Scholar 

  28. Wei J et al (2018) A novel AXL chimeric antigen receptor endows T cells with anti-tumor effects. Cell Immunol 331:49–58

    Article  CAS  PubMed  Google Scholar 

  29. Chen H et al (2021) CD27 enhances the killing effect of CAR T cells targeting trophoblast cell. Cancer Immunol Immunother 70:2059–2071

    Article  CAS  PubMed  Google Scholar 

  30. Yang XR et al (2009) CD24 is a novel predictor for poor prognosis of hepatocellular carcinoma after surgery. Clin Cancer Res 15(17):5518–5527. https://doi.org/10.1158/1078-0432.Ccr-09-0151

    Article  CAS  PubMed  Google Scholar 

  31. He H et al (2015) A novel antibody targeting CD24 and hepatocellular carcinoma in vivo by near-infrared fluorescence imaging. Immunobiology 220(12):1328–1336. https://doi.org/10.1016/j.imbio.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  32. Maus MV et al (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 1:26–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lv J et al (2019) Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer. J Hematol Oncol 12(1):18. https://doi.org/10.1186/s13045-019-0704-y

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cherkassky L, Hou Z, Amador-Molina A, Adusumilli PS (2022) Regional CAR T cell therapy: an ignition key for systemic immunity in solid tumors. Cancer Cell 40(6):569–574. https://doi.org/10.1016/j.ccell.2022.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Adusumilli PS et al (2014) Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med 6(261):261151. https://doi.org/10.1126/scitranslmed.3010162

    Article  CAS  Google Scholar 

  36. Hou AJ, Chen LC, Chen YY (2021) Navigating CAR-T cells through the solid-tumour microenvironment. Nat Rev Drug Discov 20(7):531–550. https://doi.org/10.1038/s41573-021-00189-2

    Article  CAS  PubMed  Google Scholar 

  37. Sun C, Mezzadra R, Schumacher TN (2018) Regulation and function of the PD-L1 checkpoint. Immunity 48(3):434–452. https://doi.org/10.1016/j.immuni.2018.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cherkassky L et al (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 126(8):3130–3144. https://doi.org/10.1172/jci83092

    Article  PubMed  PubMed Central  Google Scholar 

  39. Grosser R, Cherkassky L, Chintala N, Adusumilli PS (2019) Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36(5):471–482. https://doi.org/10.1016/j.ccell.2019.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rafiq S et al (2018) Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol 36(9):847–856. https://doi.org/10.1038/nbt.4195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Choi BD et al (2019) CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer 7(1):304. https://doi.org/10.1186/s40425-019-0806-7

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yu S, Yi M, Qin S, Wu K (2019) Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol Cancer 18(1):125. https://doi.org/10.1186/s12943-019-1057-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rafiq S, Hackett CS, Brentjens RJ (2020) Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 17(3):147–167. https://doi.org/10.1038/s41571-019-0297-y

    Article  PubMed  Google Scholar 

  44. Paszkiewicz PJ et al (2016) Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest 126(11):4262–4272. https://doi.org/10.1172/jci84813

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Project Program of State Key Laboratory of Natural Medicines (SKLNMZZ202219), the National Natural Science Foundation (NSFC81973223), the Fundamental Research Funds for the Central Universities (2632023GR08) and the Nanjing International Industry Technology Research and Development Cooperation Project (2021SX00000435-202100880).

Author information

Authors and Affiliations

Authors

Contributions

YPW, YF and YZ designed and performed the experiments, analyzed the data, created the figures and wrote the paper. DX collected the blood sample. ZJ and XHM conceived the idea, supervised the project, and edited the paper. All authors carefully read and approved the paper.

Corresponding authors

Correspondence to Hanmei Xu or Juan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Animal experiments were conducted in conformity with guidelines of the China Pharmaceutical University.

Consent to participate

Fresh blood was obtained from healthy volunteers with the approval of the Ethics Committee of China Pharmaceutical University. Informed consent was obtained from all individual participants.

Consent to publish

All authors and subjects in this study concur with the publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 384 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Yu, F., Yao, Z. et al. CD24 is a novel target of chimeric antigen receptor T cells for the treatment of triple negative breast cancer. Cancer Immunol Immunother 72, 3191–3202 (2023). https://doi.org/10.1007/s00262-023-03491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03491-7

Keywords

Navigation