Skip to main content

Advertisement

Log in

Oncolytic attenuated measles virus encoding NY-ESO-1 induces HLA I and II presentation of this tumor antigen by melanoma and dendritic cells

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Antitumor virotherapy stimulates the antitumor immune response during tumor cell lysis induced by oncolytic viruses (OVs). OV can be modified to express additional transgenes that enhance their therapeutic potential. In this study, we armed the spontaneously oncolytic Schwarz strain of measles viruses (MVs) with the gene encoding the cancer/testis antigen NY-ESO-1 to obtain MVny. We compared MV and MVny oncolytic activity and ability to induce NY-ESO-1 expression in six human melanoma cell lines. After MVny infection, we measured the capacity of melanoma cells to present NY-ESO-1 peptides to CD4 + and CD8 + T cell clones specific for this antigen. We assessed the ability of MVny to induce NY-ESO-1 expression and presentation in monocyte-derived dendritic cells (DCs). Our results show that MVny and MV oncolytic activity are similar with a faster cell lysis induced by MVny. We also observed that melanoma cell lines and DC expressed the NY-ESO-1 protein after MVny infection. In addition, MVny-infected melanoma cells and DCs were able to stimulate NY-ESO-1-specific CD4 + and CD8 + T cells. Finally, MVny was able to induce DC maturation. Altogether, these results show that MVny could be an interesting candidate to stimulate NY-ESO-1-specific T cells in melanoma patients with NY-ESO-1-expressing tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author (jean-francois.fonteneau@inserm.fr) upon reasonable request.

References

  1. Macedo N, Miller DM, Haq R, Kaufman HL (2020) Clinical landscape of oncolytic virus research in 2020. J Immunother Cancer 8

  2. Achard C, Surendran A, Wedge ME et al (2018) Lighting a fire in the tumor microenvironment using oncolytic immunotherapy. EBioMedicine 31:17–24

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gauvrit A, Brandler S, Sapede-Peroz C et al (2008) Measles virus induces oncolysis of mesothelioma cells and allows dendritic cells to cross-prime tumor-specific CD8 response. Cancer Res 68:4882–4892

    Article  CAS  PubMed  Google Scholar 

  4. Guillerme JB, Boisgerault N, Roulois D et al (2013) Measles virus vaccine-infected tumor cells induce tumor antigen cross-presentation by human plasmacytoid dendritic cells. Clin Cancer Res 19:1147–1158

    Article  CAS  PubMed  Google Scholar 

  5. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14:135–146

    Article  CAS  PubMed  Google Scholar 

  6. Meng X, Sun X, Liu Z, He Y (2021) A novel era of cancer/testis antigen in cancer immunotherapy. Int Immunopharmacol 98:107889

    Article  CAS  PubMed  Google Scholar 

  7. Gnjatic S, Nishikawa H, Jungbluth AA et al (2006) NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res 95:1–30

    Article  CAS  PubMed  Google Scholar 

  8. Jager E, Chen YT, Drijfhout JW et al (1998) Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 187:265–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang RF, Wang HY (2017) Immune targets and neoantigens for cancer immunotherapy and precision medicine. Cell Res 27:11–37

    Article  PubMed  Google Scholar 

  10. Thomas R, Al-Khadairi G, Roelands J et al (2018) NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol 9:947

    Article  PubMed  PubMed Central  Google Scholar 

  11. Allagui F, Achard C, Panterne C et al (2017) Modulation of the type I interferon response defines the sensitivity of human melanoma cells to oncolytic measles virus. Curr Gene Ther 16:419–428. https://doi.org/10.2174/1566523217666170102110502

    Article  CAS  PubMed  Google Scholar 

  12. Boisgerault N, Guillerme JB, Pouliquen D et al (2013) Natural oncolytic activity of live-attenuated measles virus against human lung and colorectal adenocarcinomas. Biomed Res Int 2013:387362

    Article  PubMed  PubMed Central  Google Scholar 

  13. Achard C, Boisgerault N, Delaunay T et al (2015) Sensitivity of human pleural mesothelioma to oncolytic measles virus depends on defects of the type I interferon response. Oncotarget 6:44892–44904. https://doi.org/10.18632/oncotarget.6285

    Article  PubMed  PubMed Central  Google Scholar 

  14. Delaunay T, Achard C, Boisgerault N et al (2020) Frequent homozygous deletions of type i interferon genes in pleural mesothelioma confer sensitivity to oncolytic measles virus. J Thoracic Oncol : Official Public Int Assoc Study of Lung Cancer 15:827–842. https://doi.org/10.1016/j.jtho.2019.12.128

    Article  CAS  Google Scholar 

  15. Msaouel P, Opyrchal M, Dispenzieri A et al (2018) Clinical trials with oncolytic measles virus: current status and future prospects. Curr Cancer Drug Targets 18:177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Backhaus PS, Veinalde R, Hartmann L, et al (2019) Immunological effects and viral gene expression determine the efficacy of oncolytic measles vaccines encoding IL-12 or IL-15 Agonists. Viruses 11

  17. Speck T, Heidbuechel JPW, Veinalde R et al (2018) Targeted BiTE expression by an oncolytic vector augments therapeutic efficacy against solid tumors. Clin Cancer Res 24:2128–2137

    Article  CAS  PubMed  Google Scholar 

  18. Dispenzieri A, Tong C, LaPlant B et al (2017) Phase I trial of systemic administration of Edmonston strain of measles virus genetically engineered to express the sodium iodide symporter in patients with recurrent or refractory multiple myeloma. Leukemia 31:2791–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frantz PN, Barinov A, Ruffie C et al (2021) A live measles-vectored COVID-19 vaccine induces strong immunity and protection from SARS-CoV-2 challenge in mice and hamsters. Nat Commun 12:6277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramsauer K, Schwameis M, Firbas C et al (2015) Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. Lancet Infect Dis 15:519–527

    Article  CAS  PubMed  Google Scholar 

  21. Pol JG, Zhang L, Bridle BW et al (2014) Maraba virus as a potent oncolytic vaccine vector. Mol Ther 22:420–429. https://doi.org/10.1038/mt.2013.249

    Article  CAS  PubMed  Google Scholar 

  22. Busch E, Kubon KD, Mayer JKM et al (2020) Measles vaccines designed for enhanced CD8+ T cell activation. Viruses 12:242. https://doi.org/10.3390/v12020242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fonteneau JF, Larsson M, Somersan S et al (2001) Generation of high quantities of viral and tumor-specific human CD4+ and CD8+ T-cell clones using peptide pulsed mature dendritic cells. J Immunol Methods 258:111–126

    Article  CAS  PubMed  Google Scholar 

  24. Roulois D, Vignard V, Gueugnon F et al (2011) Recognition of pleural mesothelioma by mucin-1(950–958)/human leukocyte antigen A*0201-specific CD8+ T-cells. Eur Respir J 38:1117–1126

    Article  CAS  PubMed  Google Scholar 

  25. Benlalam H, Labarrière N, Linard B et al (2001) Comprehensive analysis of the frequency of recognition of melanoma-associated antigen (MAA) by CD8 melanoma infiltrating lymphocytes (TIL): implications for immunotherapy. Eur J Immunol 31:2007–2015. https://doi.org/10.1002/1521-4141(200107)31:7%3c2007::aid-immu2007%3e3.0.co;2-s

    Article  CAS  PubMed  Google Scholar 

  26. Coulais D, Panterne C, Fonteneau JF, Gregoire M (2012) Purification of circulating plasmacytoid dendritic cells using counterflow centrifugal elutriation and immunomagnetic beads. Cytotherapy 14:887–896

    Article  CAS  PubMed  Google Scholar 

  27. Combredet C, Labrousse V, Mollet L et al (2003) A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol 77:11546–11554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  29. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  30. Ohgimoto K, Ohgimoto S, Ihara T et al (2007) Difference in production of infectious wild-type measles and vaccine viruses in monocyte-derived dendritic cells. Virus Res 123:1–8. https://doi.org/10.1016/j.virusres.2006.07.006

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez David RY, Combredet C, Sismeiro O et al (2016) Comparative analysis of viral RNA signatures on different RIG-I-like receptors. eLife 5: 11275

  32. Mura M, Combredet C, Najburg V et al (2017) Nonencapsidated 5′ copy-back defective interfering genomes produced by recombinant measles viruses are recognized by RIG-I and LGP2 but not MDA5. J Virol 91:e00643-e717. https://doi.org/10.1128/JVI.00643-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Donnelly OG, Errington-Mais F, Steele L et al (2011) Measles virus causes immunogenic cell death in human melanoma. Gene Ther

  34. Fonteneau JF, Brilot F, Munz C, Gannage M (2016) The tumor antigen NY-ESO-1 mediates direct recognition of melanoma cells by CD4+ T cells after intercellular antigen transfer. J Immunol 196:64–71

    Article  CAS  PubMed  Google Scholar 

  35. Delaunay T, Violland M, Boisgerault N et al (2018) Oncolytic viruses sensitize human tumor cells for NY-ESO-1 tumor antigen recognition by CD4+ effector T cells. Oncoimmunology 7:e1407897. https://doi.org/10.1080/2162402x.2017.1407897

    Article  CAS  PubMed  Google Scholar 

  36. Velazquez EF, Jungbluth AA, Yancovitz M et al (2007) Expression of the cancer/testis antigen NY-ESO-1 in primary and metastatic malignant melanoma (MM)–correlation with prognostic factors. Cancer Immun 7:11

    PubMed  PubMed Central  Google Scholar 

  37. Barrow C, Browning J, MacGregor D et al (2006) Tumor antigen expression in melanoma varies according to antigen and stage. Clin Cancer Res 12:764–771

    Article  CAS  PubMed  Google Scholar 

  38. Goydos JS, Patel M, Shih W (2001) NY-ESO-1 and CTp11 expression may correlate with stage of progression in melanoma. J Surg Res 98:76–80

    Article  CAS  PubMed  Google Scholar 

  39. Hunder NN, Wallen H, Cao J et al (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 358:2698–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Robbins PF, Kassim SH, Tran TL et al (2015) A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res 21:1019–1027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Philippe Hulin and the cellular and tissular core facility of Nantes University (MicroPiCell) for their expertise in video microscopy. We thank Nicolas Jouand and the core facility of flow cytometry from Nantes University (Cytocell).

Funding

This work was supported by “La Ligue Régionale Grand Ouest contre le Cancer” (CD16, CD22, CD44, CD49, CD72, CD79 and CD85), “l’association ARSMESO44”, “la Fondation ARC (PJA 20191209661)”, “l’Agence Nationale pour la Recherche (ANR-16-CE18-0016)”, and “LabEX IGO” program supported by the National Research Agency via the investment of the future program ANR-11-LABX-0016–01”.

Author information

Authors and Affiliations

Authors

Contributions

FT and JFF contributed to experiments conception. MG, MI, AA, CCh, LB, CCo, SD, VD, NB and JFF contributed to experiments. MG, NL, DF, NB, CB, FT and JFF performed data analysis and manuscript writing.

Corresponding author

Correspondence to Jean-François Fonteneau.

Ethics declarations

Competing interests

FT and JFF are authors of patents on MV. FT owns equity in Oncovita, an oncolytic virotherapy company.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grard, M., Idjellidaine, M., Arbabian, A. et al. Oncolytic attenuated measles virus encoding NY-ESO-1 induces HLA I and II presentation of this tumor antigen by melanoma and dendritic cells. Cancer Immunol Immunother 72, 3309–3322 (2023). https://doi.org/10.1007/s00262-023-03486-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03486-4

Keywords

Navigation