Skip to main content

Advertisement

Log in

BAP1-related signature predicts benefits from immunotherapy over VEGFR/mTOR inhibitors in ccRCC: a retrospective analysis of JAVELIN Renal 101 and checkmate-009/010/025 trials

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

In patients with advanced clear cell renal cell carcinoma, despite the undoubted benefits from immune checkpoint inhibitor (ICI)-based therapies over monotherapies of angiogenic/mTOR inhibitors in the intention-to-treat population, approximately a quarter of the patients can scarcely gain advantage from ICIs, prompting the search for predictive biomarkers for patient selection.

Methods

Clinical and multi-omic data of 2428 ccRCC patients were obtained from The Cancer Genome Atlas (TCGA, n = 537), JAVELIN Renal 101 (avelumab plus axitinib vs. sunitinib, n = 885), and CheckMate-009/010/025 (nivolumab vs. everolimus, n = 1006).

Results

BAP1 mutations were associated with large progression-free survival (PFS) benefits from ICI-based immunotherapies over sunitinib/everolimus (pooled estimate of interaction HR = 0.71, 95% CI 0.51–0.99, P = 0.045). Using the top 20 BAP1 mutation-associated differentially expressed genes (DEGs) generated from the TCGA cohort, we developed the BAP1-score, negatively correlated with angiogenesis and positively correlated with multiple immune-related signatures concerning immune cell infiltration, antigen presentation, B/T cell receptor, interleukin, programmed death-1, and interferon. A high BAP1-score indicated remarkable PFS benefits from ICI-based immunotherapies over angiogenic/mTOR inhibitors (avelumab plus axitinib vs. sunitinib: HR = 0.55, 95% CI 0.43–0.70, P < 0.001; nivolumab vs. everolimus: HR = 0.72, 95% CI 0.52–1.00, P = 0.045), while these benefits were negligible in the low BAP1-score subgroup (HR = 1.16 and 1.02, respectively).

Conclusion

In advanced ccRCCs, the BAP1-score is a biologically and clinically significant predictor of immune microenvironment and the clinical benefits from ICI-based immunotherapies over angiogenic/mTOR inhibitors, demonstrating its potential utility in optimizing the personalized therapeutic strategies in patients with advanced ccRCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that relevant data supporting the findings of this study are available within the paper and its Supplementary files. The references of all the included datasets are shown in Supplementary Table 1. Due to ethical and privacy concerns, we are unable to publish their full data in our study. Readers could contact the corresponding authors for the access of individual patient-level data for non-commercial purposes.

Abbreviations

ccRCC:

Clear cell renal cell carcinoma

CI:

Confidence interval

CM-009/010/025:

Checkmate-009/010/025

CTLA-4:

Cytotoxic T-cell lymphocyte-4

DDR:

DNA damage repair

DEG:

Differentially expressed gene

GES:

Gene expression score

HR:

Hazard ratio

ICI:

Immune checkpoint inhibitor

IHC:

Immunohistochemical

PD-1:

Programmed cell death-1

PD-L1:

Programmed death-ligand 1

TCGA-KIRC:

The cancer genome atlas-kidney renal clear cell carcinoma

TKI:

Tyrosine kinase inhibitor

TMB:

Tumor mutational burden

TPM:

Transcripts per million,

RRR:

Ratio of relative risk

ssGSEA:

Single sample gene set enrichment analysis

STROBE:

Strengthening the reporting of observational studies in epidemiology

VEGFR:

Vascular endothelial growth factor receptor

WES:

Whole-exome sequencing

References

  1. Choueiri TK, Powles T, Burotto M et al (2021) Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. New Engl J Med 384:829–841. https://doi.org/10.1056/NEJMoa2026982

    Article  CAS  PubMed  Google Scholar 

  2. Motzer RJ, Rini BI, McDermott DF et al (2019) Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol 20:1370–1385. https://doi.org/10.1016/s1470-2045(19)30413-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Motzer RJ, Tannir NM, McDermott DF et al (2018) Nivolumab plus Ipilimumab versus sunitinib in advanced renal-cell carcinoma. New Engl J Med 378:1277–1290. https://doi.org/10.1056/NEJMoa1712126

    Article  CAS  PubMed  Google Scholar 

  4. Powles T, Plimack ER, Soulières D et al (2020) Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol 21:1563–1573. https://doi.org/10.1016/s1470-2045(20)30436-8

    Article  CAS  PubMed  Google Scholar 

  5. Motzer R, Alekseev B, Rha SY et al (2021) Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. New Engl J Med 384:1289–1300. https://doi.org/10.1056/NEJMoa2035716

    Article  CAS  PubMed  Google Scholar 

  6. Rini BI, Plimack ER, Stus V et al (2019) Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. New Engl J Med. https://doi.org/10.1056/NEJMoa1816714

    Article  PubMed  Google Scholar 

  7. Rini BI, Powles T, Atkins MB et al (2019) Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393:2404–2415. https://doi.org/10.1016/S0140-6736(19)30723-8

    Article  PubMed  Google Scholar 

  8. Motzer RJ, Penkov K, Haanen J et al (2019) Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. New Engl J Med. https://doi.org/10.1056/NEJMoa1816047

    Article  PubMed  Google Scholar 

  9. Rini BI, Huseni M, Atkins MB et al (2018) Molecular correlates differentiate response to atezolizumab (atezo) + bevacizumab (bev) vs sunitinib (sun): Results from a phase III study (IMmotion151) in untreated metastatic renal cell carcinoma (mRCC). Ann Oncol 29:viii724–viii725. https://doi.org/10.1093/annonc/mdy424.037

    Article  Google Scholar 

  10. Braun DA, Hou Y, Bakouny Z et al (2020) Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat Med 26:909–918. https://doi.org/10.1038/s41591-020-0839-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ged Y, Chaim JL, DiNatale RG et al (2020) DNA damage repair pathway alterations in metastatic clear cell renal cell carcinoma and implications on systemic therapy. J Immunother Cancer. https://doi.org/10.1136/jitc-2019-000230

    Article  PubMed  PubMed Central  Google Scholar 

  12. Labriola MK, Zhu J, Gupta RT et al (2020) Characterization of tumor mutation burden, PD-L1 and DNA repair genes to assess relationship to immune checkpoint inhibitors response in metastatic renal cell carcinoma. J Immunother Cancer. https://doi.org/10.1136/jitc-2019-000319

    Article  PubMed  PubMed Central  Google Scholar 

  13. Motzer RJ, Choueiri TK, McDermott DF et al (2020) Biomarker analyses from the phase III CheckMate 214 trial of nivolumab plus ipilimumab (N+I) or sunitinib (S) in advanced renal cell carcinoma (aRCC). J Clin Oncol 38:5009. https://doi.org/10.1200/JCO.2020.38.15_suppl.5009

    Article  Google Scholar 

  14. Motzer RJ, Robbins PB, Powles T et al (2020) Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nat Med 26:1733–1741. https://doi.org/10.1038/s41591-020-1044-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ross-Macdonald P, Walsh AM, Chasalow SD, Ammar R, Papillon-Cavanagh S, Szabo PM, Choueiri TK, Sznol M, Wind-Rotolo M (2021) Molecular correlates of response to nivolumab at baseline and on treatment in patients with RCC. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-001506

    Article  PubMed  PubMed Central  Google Scholar 

  16. Miao D, Margolis CA, Gao W et al (2018) Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359:801–806. https://doi.org/10.1126/science.aan5951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dizman N, Lyou Y, Salgia N et al (2020) Correlates of clinical benefit from immunotherapy and targeted therapy in metastatic renal cell carcinoma: comprehensive genomic and transcriptomic analysis. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-000953

    Article  PubMed  PubMed Central  Google Scholar 

  18. Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. New Engl J Med 373:1803–1813. https://doi.org/10.1056/NEJMoa1510665

    Article  CAS  PubMed  Google Scholar 

  19. Tucker MD, Rini BI (2020) Predicting response to immunotherapy in metastatic renal cell carcinoma. Cancers (Basel). https://doi.org/10.3390/cancers12092662

    Article  PubMed  Google Scholar 

  20. Guida A, Sabbatini R, Gibellini L, De Biasi S, Cossarizza A, Porta C (2021) Finding predictive factors for immunotherapy in metastatic renal-cell carcinoma: what are we looking for? Cancer Treat Rev 94:102157. https://doi.org/10.1016/j.ctrv.2021.102157

    Article  CAS  PubMed  Google Scholar 

  21. Motzer RJ, Choueiri TK, McDermott DF et al (2022) Biomarker analysis from CheckMate 214: nivolumab plus ipilimumab versus sunitinib in renal cell carcinoma. J Immunother Cancer. https://doi.org/10.1136/jitc-2021-004316

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu XD, Kong W, Peterson CB et al (2020) PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun 11:2135. https://doi.org/10.1038/s41467-020-15959-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Motzer RJ, Banchereau R, Hamidi H et al (2020) Molecular subsets in renal cancer determine outcome to checkpoint and angiogenesis blockade. Cancer Cell 38:803–817. https://doi.org/10.1016/j.ccell.2020.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McDermott DF, Huseni MA, Atkins MB et al (2018) Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med 24:749–757. https://doi.org/10.1038/s41591-018-0053-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Z, Zhao J, Wang G et al (2018) Comutations in DNA damage response pathways serve as potential biomarkers for immune checkpoint blockade. Cancer Res 78:6486–6496. https://doi.org/10.1158/0008-5472.CAN-18-1814

    Article  CAS  PubMed  Google Scholar 

  26. Altman DG, Bland JM (2003) Interaction revisited: the difference between two estimates. BMJ 326:219

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ballman KV (2015) Biomarker: predictive or prognostic? J Clin Oncol 33:3968–3971. https://doi.org/10.1200/JCO.2015.63.3651

    Article  CAS  PubMed  Google Scholar 

  28. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barbie DA, Tamayo P, Boehm JS et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112. https://doi.org/10.1038/nature08460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18:248–262. https://doi.org/10.1016/j.celrep.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  32. Cancer Genome Atlas Research N (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49. https://doi.org/10.1038/nature12222

    Article  CAS  Google Scholar 

  33. Thorsson V, Gibbs DL, Brown SD et al (2018) The immune landscape of cancer. Immunity 48:812–830. https://doi.org/10.1016/j.immuni.2018.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A et al (2012) BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 44:751–759. https://doi.org/10.1038/ng.2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hakimi AA, Ostrovnaya I, Reva B et al (2013) Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res 19:3259–3267. https://doi.org/10.1158/1078-0432.CCR-12-3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Z, Wang X, Xu Y et al (2022) Mutations of PI3K-AKT-mTOR pathway as predictors for immune cell infiltration and immunotherapy efficacy in dMMR/MSI-H gastric adenocarcinoma. BMC Med. https://doi.org/10.1186/s12916-022-02327-y

    Article  PubMed  PubMed Central  Google Scholar 

  37. Loi S, Michiels S, Baselga J et al (2013) PIK3CA genotype and a PIK3CA mutation-related gene signature and response to everolimus and letrozole in estrogen receptor positive breast cancer. PLoS ONE 8:e53292. https://doi.org/10.1371/journal.pone.0053292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang K, Hong X, Song Z et al (2020) Identification of deleterious NOTCH mutation as novel predictor to efficacious immunotherapy in NSCLC. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-3976

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang F, Wang J, Xu Y, Cai S, Li T, Wang G, Li C, Zhao L, Hu Y (2022) Co-occurring genomic alterations and immunotherapy efficacy in NSCLC. NPJ Precis Oncol 6:4. https://doi.org/10.1038/s41698-021-00243-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bai H, Duan J, Li C et al (2020) EPHA mutation as a predictor of immunotherapeutic efficacy in lung adenocarcinoma. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-001315

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang T, Lu R, Kapur P et al (2018) An empirical approach leveraging tumorgrafts to dissect the tumor microenvironment in renal cell carcinoma identifies missing link to prognostic inflammatory factors. Cancer Discov 8:1142–1155. https://doi.org/10.1158/2159-8290.CD-17-1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bononi A, Giorgi C, Patergnani S et al (2017) BAP1 regulates IP3R3-mediated Ca(2+) flux to mitochondria suppressing cell transformation. Nature 546:549–553. https://doi.org/10.1038/nature22798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee HS, Seo HR, Lee SA, Choi S, Kang D, Kwon J (2019) BAP1 promotes stalled fork restart and cell survival via INO80 in response to replication stress. Biochem J 476:3053–3066. https://doi.org/10.1042/BCJ20190622

    Article  CAS  PubMed  Google Scholar 

  44. Lee HS, Lee SA, Hur SK, Seo JW, Kwon J (2014) Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis. Nat Commun 5:5128. https://doi.org/10.1038/ncomms6128

    Article  CAS  PubMed  Google Scholar 

  45. Nishikawa H, Wu W, Koike A, Kojima R, Gomi H, Fukuda M, Ohta T (2009) BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res 69:111–119. https://doi.org/10.1158/0008-5472.CAN-08-3355

    Article  CAS  PubMed  Google Scholar 

  46. Daou S, Barbour H, Ahmed O et al (2018) Monoubiquitination of ASXLs controls the deubiquitinase activity of the tumor suppressor BAP1. Nat Commun 9:4385. https://doi.org/10.1038/s41467-018-06854-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Daou S, Hammond-Martel I, Mashtalir N et al (2015) The BAP1/ASXL2 histone H2A deubiquitinase complex regulates cell proliferation and is disrupted in cancer. J Biol Chem 290:28643–28663. https://doi.org/10.1074/jbc.M115.661553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ji Z, Mohammed H, Webber A, Ridsdale J, Han N, Carroll JS, Sharrocks AD (2014) The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex. Nucleic Acids Res 42:6232–6242. https://doi.org/10.1093/nar/gku274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruan HB, Han X, Li MD et al (2012) O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1alpha stability. Cell Metab 16:226–237. https://doi.org/10.1016/j.cmet.2012.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baughman JM, Rose CM, Kolumam G et al (2016) NeuCode proteomics reveals bap1 regulation of metabolism. Cell Rep 16:583–595. https://doi.org/10.1016/j.celrep.2016.05.096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bononi A, Yang H, Giorgi C et al (2017) Germline BAP1 mutations induce a Warburg effect. Cell Death Differ 24:1694–1704. https://doi.org/10.1038/cdd.2017.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang Y, Shi J, Liu X et al (2018) BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20:1181–1192. https://doi.org/10.1038/s41556-018-0178-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peng H, Yang F, Hu Q, Sun J, Peng C, Zhao Y, Huang C (2020) The ubiquitin-specific protease USP8 directly deubiquitinates SQSTM1/p62 to suppress its autophagic activity. Autophagy 16:698–708. https://doi.org/10.1080/15548627.2019.1635381

    Article  CAS  PubMed  Google Scholar 

  54. He M, Chaurushiya MS, Webster JD et al (2019) Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science 364:283–285. https://doi.org/10.1126/science.aav4902

    Article  CAS  PubMed  Google Scholar 

  55. Luo Z, Mu L, Zheng Y, Shen W, Li J, Xu L, Zhong B, Liu Y, Zhou Y (2020) NUMB enhances Notch signaling by repressing ubiquitination of NOTCH1 intracellular domain. J Mol Cell Biol 12:345–358. https://doi.org/10.1093/jmcb/mjz088

    Article  CAS  PubMed  Google Scholar 

  56. Misaghi S, Ottosen S, Izrael-Tomasevic A et al (2009) Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Mol Cell Biol 29:2181–2192. https://doi.org/10.1128/MCB.01517-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kapur P, Peña-Llopis S, Christie A, Zhrebker L, Pavía-Jiménez A, Rathmell WK, Xie X-J, Brugarolas J (2013) Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol 14:159–167. https://doi.org/10.1016/s1470-2045(12)70584-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kapur P, Christie A, Raman JD et al (2014) BAP1 immunohistochemistry predicts outcomes in a multi-institutional cohort with clear cell renal cell carcinoma. J Urol 191:603–610. https://doi.org/10.1016/j.juro.2013.09.041

    Article  CAS  PubMed  Google Scholar 

  59. Miura Y, Inoshita N, Ikeda M et al (2017) Loss of BAP1 protein expression in the first metastatic site predicts prognosis in patients with clear cell renal cell carcinoma. Urol Oncol 35:386–391. https://doi.org/10.1016/j.urolonc.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  60. Tennenbaum DM, Manley BJ, Zabor E et al (2017) Genomic alterations as predictors of survival among patients within a combined cohort with clear cell renal cell carcinoma undergoing cytoreductive nephrectomy. Urol Oncol 35(532):e7–e13. https://doi.org/10.1016/j.urolonc.2017.03.015

    Article  CAS  Google Scholar 

  61. Oka S, Inoshita N, Miura Y et al (2018) The loss of BAP1 protein expression predicts poor prognosis in patients with nonmetastatic clear cell renal cell carcinoma with inferior vena cava tumor thrombosis. Urol Oncol 36(365):e9–e14. https://doi.org/10.1016/j.urolonc.2018.04.015

    Article  CAS  Google Scholar 

  62. Ge YZ, Xu LW, Zhou CC et al (2017) A BAP1 mutation-specific MicroRNA signature predicts clinical outcomes in clear cell renal cell carcinoma patients with wild-type BAP1. J Cancer 8:2643–2652. https://doi.org/10.7150/jca.20234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Minardi D, Lucarini G, Milanese G, Di Primio R, Montironi R, Muzzonigro G (2016) Loss of nuclear BAP1 protein expression is a marker of poor prognosis in patients with clear cell renal cell carcinoma. Urol Oncol 34(338):e11–e18. https://doi.org/10.1016/j.urolonc.2016.03.006

    Article  CAS  Google Scholar 

  64. da Costa WH, da Cunha IW, Fares AF et al (2018) Prognostic impact of concomitant loss of PBRM1 and BAP1 protein expression in early stages of clear cell renal cell carcinoma. Urol Oncol 36(243):e1–e8. https://doi.org/10.1016/j.urolonc.2018.01.002

    Article  CAS  Google Scholar 

  65. Hsieh JJ, Chen D, Wang PI et al (2017) Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur Urol 71:405–414. https://doi.org/10.1016/j.eururo.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  66. Voss MH, Reising A, Cheng Y et al (2018) Genomically annotated risk model for advanced renal-cell carcinoma: a retrospective cohort study. Lancet Oncol 19:1688–1698. https://doi.org/10.1016/s1470-2045(18)30648-x

    Article  PubMed  PubMed Central  Google Scholar 

  67. Panou V, Gadiraju M, Wolin A et al (2018) Frequency of germline mutations in cancer susceptibility genes in malignant mesothelioma. J Clin Oncol 36:2863–2871. https://doi.org/10.1200/JCO.2018.78.5204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harbour JW, Onken MD, Roberson ED et al (2010) Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330:1410–1413. https://doi.org/10.1126/science.1194472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Njauw CN, Kim I, Piris A et al (2012) Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS ONE 7:e35295. https://doi.org/10.1371/journal.pone.0035295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Popova T, Hebert L, Jacquemin V et al (2013) Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet 92:974–980. https://doi.org/10.1016/j.ajhg.2013.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Farley MN, Schmidt LS, Mester JL et al (2013) A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. Mol Cancer Res 11:1061–1071. https://doi.org/10.1158/1541-7786.MCR-13-0111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shrestha R, Nabavi N, Lin YY et al (2019) BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Med 11:8. https://doi.org/10.1186/s13073-019-0620-3

    Article  PubMed  PubMed Central  Google Scholar 

  73. Figueiredo CR, Kalirai H, Sacco JJ, Azevedo RA, Duckworth A, Slupsky JR, Coulson JM, Coupland SE (2020) Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development. J Pathol 250:420–439. https://doi.org/10.1002/path.5384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou Q, Qi Y, Wang Z et al (2020) CCR5 blockade inflames antitumor immunity in BAP1-mutant clear cell renal cell carcinoma. J Immunother Cancer. https://doi.org/10.1136/jitc-2019-000228

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang L, Birch NW, Zhao Z et al (2021) Epigenetic targeted therapy of stabilized BAP1 in ASXL1 gain-of-function mutated leukemia. Nat Cancer 2:515–526. https://doi.org/10.1038/s43018-021-00199-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dizai Shi (Stitch) for his emotional support and the researchers involved in the TCGA-KIRC dataset and the clinical trials (JAVELIN and CM-009/010/025) who shared patient-level data for public use.

Funding

This work was supported by National Natural Science Foundation of China (81770790 and 81972389 to Xu Zhang) and Hainan Province Science and Technology Special Fund (ZDYF2021SHFZ056 to Taoping Shi).

Author information

Authors and Affiliations

Authors

Contributions

KL, YH, YX, and TS conceptualized and designed this study. KL and YX developed the methodology and acquired the data. KL, YH, YX, and TS analyzed and interpreted the data. All authors contributed to the writing, review, and/or revision of the manuscript. GW, SC, and XZ provided administrative, technical, and/or material support. XZ and TS supervised this study. All authors approved the submitted version of manuscript.

Corresponding authors

Correspondence to Xu Zhang or Taoping Shi.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest, except the employment of Yu Xu, Guoqiang Wang, and Shangli Cai in Burning Rock Biotech.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Our study is following the principles of the Declaration of Helsinki and was approved by the Institution Review Board of Chinese PLA General Hospital (ChiCTR2000030405).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 368 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Huang, Y., Xu, Y. et al. BAP1-related signature predicts benefits from immunotherapy over VEGFR/mTOR inhibitors in ccRCC: a retrospective analysis of JAVELIN Renal 101 and checkmate-009/010/025 trials. Cancer Immunol Immunother 72, 2557–2572 (2023). https://doi.org/10.1007/s00262-023-03424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03424-4

Keywords

Navigation