Skip to main content

Advertisement

Log in

Prognostic role of the innate immune signature CD163 and “eat me” signal calreticulin in clear cell renal cell carcinoma

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The effects of the innate immune status on patients with clear cell renal cell carcinoma (ccRCC) currently remain unknown. We herein provided more extensive information about the inner landscape of immunobiology of ccRCC. In total, 260 ccRCC samples from three different cohorts consisting of 213 primary tumors and 47 metastases were obtained. We focused on five representative innate immune signatures, CD68, CD163, the “eat me” signal calreticulin, the “don't eat me” signal CD47, and signal regulatory protein α, and examined the role of each signature by quantitative immunohistochemistry. We then conducted an integrated genome mutation analysis by next-generation sequencing. Among the five markers, high CD163 and low calreticulin expression levels were prognostic in ccRCC. The application of a new risk model based on CD163 and calreticulin levels, named the innate immune risk group (high risk: high-CD163/low calreticulin, intermediate risk: high-CD163/high calreticulin or low CD163/low calreticulin, low risk: low-CD163/high calreticulin), enabled the sequential stratification of patient prognosis and malignancy. Although organ-specific differences were observed, metastases appeared to have a higher innate immune risk, particularly in the lungs, with 50% of ccRCC metastases being classified into the high-risk group according to our risk score. An analysis of genomic alterations based on the innate immune risk group revealed that alterations in the TP53/Cell cycle pathway were highly prevalent in high-risk ccRCC patients according to two innate immune signatures CD163 and calreticulin. The present results provide insights into the immune-genomic biology of ccRCC tumors for innate immunity and will contribute to future therapies focused on the innate immune system in solid cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Choueiri TK, Motzer RJ (2017) Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med 376:354–366

    Article  CAS  PubMed  Google Scholar 

  2. Medical Research Council Renal Cancer Collaborators (1999) Interferon-alpha and survival in metastatic renal carcinoma: early results of a randomised controlled trial. Medical Research Council Renal Cancer Collaborators. Lancet 353:14–17

    Article  Google Scholar 

  3. Klapper JA, Downey SG, Smith FO et al (2008) High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma : a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer 113:293–301

    Article  CAS  PubMed  Google Scholar 

  4. Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  CAS  PubMed  Google Scholar 

  5. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    Article  CAS  PubMed  Google Scholar 

  6. Hudes G, Carducci M, Tomczak P et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281

    Article  CAS  PubMed  Google Scholar 

  7. Motzer RJ, Escudier B, Oudard S et al (2008) efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase iii trial. Lancet 372:449–456

    Article  CAS  PubMed  Google Scholar 

  8. Motzer RJ, Hutson TE, Cella D et al (2013) Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med 369:722–731

    Article  CAS  PubMed  Google Scholar 

  9. Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Motzer RJ, Tannir NM, McDermott DF et al (2018) Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 378:1277–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10

    Article  PubMed  Google Scholar 

  12. Kim JM, Chen DS (2016) Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol 27:1492–1504

    Article  CAS  PubMed  Google Scholar 

  13. Feng M, Jiang W, Kim BYS et al (2019) Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 19:568–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Advani R, Flinn I, Popplewell L et al (2018) CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N Engl J Med 379:1711–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weiskopf K (2017) Cancer immunotherapy targeting the CD47/SIRPalpha axis. Eur J Cancer 76:100–109

    Article  CAS  PubMed  Google Scholar 

  16. Chao MP, Takimoto CH, Feng DD et al (2019) Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies. Front Oncol 9:1380

    Article  PubMed  Google Scholar 

  17. Mantovani A, Longo DL (2018) Macrophage checkpoint blockade in cancer—back to the future. N Engl J Med 379:1777–1779

    Article  PubMed  Google Scholar 

  18. Mantovani A, Marchesi F, Malesci A et al (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schcolnik-Cabrera A, Oldak B, Juarez M et al (2019) Calreticulin in phagocytosis and cancer: opposite roles in immune response outcomes. Apoptosis 24:245–255

    Article  CAS  PubMed  Google Scholar 

  20. Takamatsu K, Tanaka N, Hakozaki K et al (2021) Profiling the inhibitory receptors LAG-3, TIM-3, and TIGIT in renal cell carcinoma reveals malignancy. Nat Commun 12:5547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Masuda T, Tanaka N, Takamatsu K et al (2022) Unique characteristics of tertiary lymphoid structures in kidney clear cell carcinoma: prognostic outcome and comparison with bladder cancer. J Immunother Cancer 10:e003883

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kufukihara R, Tanaka N, Takamatsu K et al (2022) Hybridisation chain reaction-based visualisation and screening for lncRNA profiles in clear-cell renal-cell carcinoma. Br J Cancer 127:1133–1141

    Article  CAS  PubMed  Google Scholar 

  23. Hakozaki K, Tanaka N, Takamatsu K et al (2021) Landscape of prognostic signatures and immunogenomics of the AXL/GAS6 axis in renal cell carcinoma. Br J Cancer 125:1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chevrier S, Levine JH, Zanotelli VRT et al (2017) An immune atlas of clear cell renal cell carcinoma. Cell 169(736–749):e718

    Google Scholar 

  25. Komohara Y, Hasita H, Ohnishi K et al (2011) Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci 102:1424–1431

    Article  CAS  PubMed  Google Scholar 

  26. Ma C, Horlad H, Ohnishi K et al (2018) CD163-positive cancer cells are potentially associated with high malignant potential in clear cell renal cell carcinoma. Med Mol Morphol 51:13–20

    Article  CAS  PubMed  Google Scholar 

  27. Hua X, Chen J, Su Y, Liang C (2020) Identification of an immune-related risk signature for predicting prognosis in clear cell renal cell carcinoma. Aging (Albany NY) 12:2302–2332

    Article  CAS  PubMed  Google Scholar 

  28. Yanagita T, Murata Y, Tanaka D et al (2017) Anti-SIRPalpha antibodies as a potential new tool for cancer immunotherapy. JCI Insight 2:e89140

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was supported by Grants-in-Aid for Scientific Research (KAKENHI 21K09411 to T.A.; 19H03792, 21K19414, and 22H03217 to N.T), the Takeda Science Foundation (N.T.), the Kobayashi Foundation for Cancer Research (N.T.), the SGH Foundation for Cancer Research (to N.T.), the Princess Takamatsu Cancer Research Fund (to N.T.), and the Keio Gijuku Academic Development Funds (to N.T.).

Author information

Authors and Affiliations

Authors

Contributions

T.A. and N.T. designed the study. T.A., K.T., K.H., R.K., Y.B., and S.M. performed the experiments. T.T., K.M., S.M., T.K., and R.M. provided conceptual advice. H.N. performed genetic experiments. T.A. and N.T. wrote the manuscript with inputs from M.O.

Corresponding author

Correspondence to Nobuyuki Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 14 kb)

Supplementary file2 (XLSX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anno, T., Tanaka, N., Takamatsu, K. et al. Prognostic role of the innate immune signature CD163 and “eat me” signal calreticulin in clear cell renal cell carcinoma. Cancer Immunol Immunother 72, 1779–1788 (2023). https://doi.org/10.1007/s00262-023-03369-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03369-8

Keywords

Navigation