Skip to main content

Advertisement

Log in

Novel ocular immunotherapy induces tumor regression in an equine model of ocular surface squamous neoplasia

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Ocular surface squamous neoplasia (OSSN) is the major cause of corneal cancer in man and horses worldwide, and the prevalence of OSSN is increasing due to greater UVB exposure globally. Currently, there are no approved treatments for OSSN in either species, and most patients are managed with surgical excision or off-label treatment with locally injected interferon alpha, or topically applied cytotoxic drugs such as mitomycin C. A more broadly effective and readily applied immunotherapy could exert a significant impact on management of OSSN worldwide. We therefore evaluated the effectiveness of a liposomal TLR complex (LTC) immunotherapy, which previously demonstrated strong antiviral activity in multiple animal models following mucosal application, for ocular antitumor activity in a horse spontaneous OSSN model. In vitro studies demonstrated strong activation of interferon responses in horse leukocytes by LTC and suppression of OSSN cell growth and migration. In a trial of 8 horses (9 eyes), treatment with topical or perilesional LTC resulted in an overall tumor response rate of 67%, including durable regression of large OSSN tumors. Repeated treatment with LTC ocular immunotherapy was also very well tolerated clinically. We conclude therefore that ocular immunotherapy with LTC warrants further investigation as a novel approach to management of OSSN in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data are within the manuscript.

References

  1. Kafarnik C, Rawlings M, Dubielzig RR (2009) Corneal stromal invasive squamous cell carcinoma: a retrospective morphological description in 10 horses. Vet Ophthalmol 12(1):6–12

    Article  PubMed  Google Scholar 

  2. Wilcock BP (1993) The eye and ear.In: Pathology of domestic animals, pp 441–529

  3. Blodi FC, Ramsey FK (1967) Ocular tumors in domestic animals. Am J Ophthalmol 64(3):627–633

    Article  Google Scholar 

  4. McInnis CL, Giuliano EA, Johnson PJ, Turk JR (2007) Immunohistochemical evaluation of cyclooxygenase expression in corneal squamous cell carcinoma in horses. Am J Vet Res 68(2):165–170

    Article  CAS  PubMed  Google Scholar 

  5. Dugan SJ, Curtis CR, Roberts SM, Severin GA (1991) Epidemiologic study of ocular/adnexal squamous cell carcinoma in horses. J Am Vet Med Assoc 198(2):251–256

    CAS  PubMed  Google Scholar 

  6. Sykora S, Brandt S (2017) Papillomavirus infection and squamous cell carcinoma in horses. Vet J 223:48–54

    Article  PubMed  Google Scholar 

  7. Rassnick KM, Njaa BL (2007) Cyclooxygenase-2 immunoreactivity in equine ocular squamous-cell carcinoma. J Vet Diagn Invest 19(4):436–439

    Article  PubMed  Google Scholar 

  8. Dugan SJ, Roberts SM, Curtis CR, Severin GA (1991) Prognostic factors and survival of horses with ocular/adnexal squamous cell carcinoma: 147 cases (1978–1988). J Am Vet Med Assoc 198(2):298–303

    CAS  PubMed  Google Scholar 

  9. King TC, Priehs DR, Gum GG, Miller TR (1991) Therapeutic management of ocular squamous cell carcinoma in the horse: 43 cases (1979–1989). Equine Vet J 23(6):449–452

    Article  CAS  PubMed  Google Scholar 

  10. Mosunic CB, Moore PA, Carmicheal KP, Chandler MJ, Vidyashankar A, Zhao Y, Roberts RE, Dietrich UM (2004) Effects of treatment with and without adjuvant radiation therapy on recurrence of ocular and adnexal squamous cell carcinoma in horses: 157 cases (1985–2002). J Am Vet Med Assoc 225(11):1733–1738

    Article  CAS  PubMed  Google Scholar 

  11. McCalla TL, Moore CP, Collier LL (1992) Immunotherapy of periocular squamous cell carcinoma with metastasis in a pony. J Am Vet Med Assoc 200(11):1678–1681

    CAS  PubMed  Google Scholar 

  12. Théon AP, Pascoe JR, Meagher DM (1994) Perioperative intratumoral administration of cisplatin for treatment of cutaneous tumors in equidae. J Am Vet Med Assoc 205(8):1170–1176

    PubMed  Google Scholar 

  13. Théon AP, Pascoe JR (1995) Iridium-192 interstitial brachytherapy for equine periocular tumours: treatment results and prognostic factors in 115 horses. Equine Vet J 27(2):117–121

    Article  PubMed  Google Scholar 

  14. Théon AP, Pascoe JR, Madigan JE, Carlson G, Metzger L (1997) Comparison of intratumoral administration of cisplatin versus bleomycin for treatment of periocular squamous cell carcinomas in horses. Am J Vet Res 58(4):431–436

    PubMed  Google Scholar 

  15. Wilkie DA, Burt JK (1990) Combined treatment of ocular squamous cell carcinoma in a horse, using radiofrequency hyperthermia and interstitial 198Au implants. J Am Vet Med Assoc 196(11):1831–1833

    CAS  PubMed  Google Scholar 

  16. English RV, Nasisse MP, Davidson MG (1990) Carbon dioxide laser ablation for treatment of limbal squamous cell carcinoma in horses. J Am Vet Med Assoc 196(3):439–442

    CAS  PubMed  Google Scholar 

  17. Walker MA, Schumacher J, Schmitz DG, McMullen WC, Ruoff WW, Crabill MR, Hawkins JF, Hogan PM, McClure SR, Vacek JR et al (1998) Cobalt 60 radiotherapy for treatment of squamous cell carcinoma of the nasal cavity and paranasal sinuses in three horses. J Am Vet Med Assoc 212(6):848–851

    CAS  PubMed  Google Scholar 

  18. De Ridder T, Ruppin M, Wheeless M, Williams S, Reddell P (2020) Use of the intratumoural anticancer drug tigilanol tiglate in two horses. Front Vet Sci 7:639

    Article  PubMed  PubMed Central  Google Scholar 

  19. Estell K (2017) Periocular neoplasia in the horse. Vet Clin North Am Equine Pract 33(3):551–562

    Article  PubMed  Google Scholar 

  20. Elce YA, Orsini JA, Blikslager AT (2007) Expression of cyclooxygenase-1 and -2 in naturally occurring squamous cell carcinomas in horses. Am J Vet Res 68(1):76–80

    Article  CAS  PubMed  Google Scholar 

  21. Howarth S, Lucke VM, Pearson H (1991) Squamous cell carcinoma of the equine external genitalia: a review and assessment of penile amputation and urethrostomy as a surgical treatment. Equine Vet J 23(1):53–58

    Article  CAS  PubMed  Google Scholar 

  22. Hendrix DVH (2005) Equine ocular squamous cell carcinoma. Clin Tech Equine Pract 4(1):87–94

    Article  Google Scholar 

  23. Gichuhi S, Ohnuma S-i, Sagoo MS, Burton MJ (2014) Pathophysiology of ocular surface squamous neoplasia. Exp Eye Res 129:172–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shank A, Teixeria L, Dubielzig R (2018) Canine, feline, and equine corneal vascular neoplasia: a retrospective study (2007–2015). Vet Ophthalmol. https://doi.org/10.1111/vop.12571

    Article  PubMed  Google Scholar 

  25. Crausaz M, Launois T, Smith-Fleming K, McCoy AM, Knickelbein KE, Bellone RR (2020) DDB2 genetic risk factor for ocular squamous cell carcinoma identified in three additional horse breeds. Genes (Basel). https://doi.org/10.3390/genes11121460

    Article  PubMed  Google Scholar 

  26. Bellone RR (2020) Genetics of equine ocular disease. Vet Clin N Am Equine Pract 36(2):303–322

    Article  Google Scholar 

  27. Bellone RR, Liu J, Petersen JL, Mack M, Singer-Berk M, Drögemüller C, Malvick J, Wallner B, Brem G, Penedo MC et al (2017) A missense mutation in damage-specific DNA binding protein 2 is a genetic risk factor for limbal squamous cell carcinoma in horses. Int J Cancer 141(2):342–353

    Article  CAS  PubMed  Google Scholar 

  28. Knickelbein KE, Lassaline ME, Singer-Berk M, Reilly CM, Clode AB, Famula TR, Michau TM, Bellone RR (2020) A missense mutation in damage-specific DNA binding protein 2 is a genetic risk factor for ocular squamous cell carcinoma in Belgian horses. Equine Vet J 52(1):34–40

    Article  CAS  PubMed  Google Scholar 

  29. Neale RE, Weissenborn S, Abeni D, Bavinck JN, Euvrard S, Feltkamp MC, Green AC, Harwood C, de Koning M, Naldi L et al (2013) Human papillomavirus load in eyebrow hair follicles and risk of cutaneous squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 22(4):719–727

    Article  CAS  PubMed  Google Scholar 

  30. Zhu KW, Affolter VK, Gaynor AM, Dela Cruz FN, Pesavento PA (2015) Equine genital squamous cell carcinoma: in situ hybridization identifies a distinct subset containing equus caballus papillomavirus 2. Vet Pathol 52(6):1067–1072

    Article  CAS  PubMed  Google Scholar 

  31. Wheat W, Chow L, Coy J, Contreras E, Lappin M, Dow S (2019) Activation of upper respiratory tract mucosal innate immune responses in cats by liposomal toll-like receptor ligand complexes delivered topically. J Vet Intern Med 33(2):838–845

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wheat W, Chow L, Kuzmik A, Soontararak S, Kurihara J, Lappin M, Dow S (2019) Local immune and microbiological responses to mucosal administration of a Liposome-TLR agonist immunotherapeutic in dogs. BMC Vet Res 15(1):330

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wheat W, Chow L, Rozo V, Herman J, Still Brooks K, Colbath A, Hunter R, Dow S (2020) Non-specific protection from respiratory tract infections in cattle generated by intranasal administration of an innate immune stimulant. PLoS ONE 15(6):e0235422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zaks K, Jordan M, Guth A, Sellins K, Kedl R, Izzo A, Bosio C, Dow S (2006) Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J Immunol 176(12):7335–7345

    Article  CAS  PubMed  Google Scholar 

  35. Kamstock D, Guth A, Elmslie R, Kurzman I, Liggitt D, Coro L, Fairman J, Dow S (2006) Liposome–DNA complexes infused intravenously inhibit tumor angiogenesis and elicit antitumor activity in dogs with soft tissue sarcoma. Cancer Gene Ther 13(3):306–317

    Article  CAS  PubMed  Google Scholar 

  36. Regan D, Dow S (2015) Manipulation of innate immunity for cancer therapy in dogs. Vet Sci. https://doi.org/10.3390/vetsci2040423

    Article  PubMed  PubMed Central  Google Scholar 

  37. Eaton JS, Miller PE, Bentley E, Thomasy SM, Murphy CJ (2017) The SPOTS system: an ocular scoring system optimized for use in modern preclinical drug development and toxicology. J Ocul Pharmacol Ther 33(10):718–734

    Article  CAS  PubMed  Google Scholar 

  38. van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–245

    Article  PubMed  Google Scholar 

  39. Henderson A, Propst K, Kedl R, Dow S (2011) Mucosal immunization with liposome-nucleic acid adjuvants generates effective humoral and cellular immunity. Vaccine 29(32):5304–5312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aricò E, Castiello L, Capone I, Gabriele L, Belardelli F (2019) Type I interferons and cancer: an evolving story demanding novel clinical applications. Cancers (Basel). https://doi.org/10.3390/cancers11121943

    Article  PubMed  Google Scholar 

  41. Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV (2020) Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front Cell Dev Biol 8:402–402

    Article  PubMed  PubMed Central  Google Scholar 

  42. Alexandroff AB, Jackson AM, O’Donnell MA, James K (1999) BCG immunotherapy of bladder cancer: 20 years. Lancet 353(9165):1689–1694. https://doi.org/10.1016/S0140-6736(98)07422-4

    Article  PubMed  Google Scholar 

  43. Studer U, Marti E Fau - Stornetta D, Stornetta D Fau - Lazary S, Lazary S Fau - Gerber H, Gerber H (1997) The therapy of equine sarcoid with a non-specific immunostimulator—the epidemiology and spontaneous regression of sarcoids. (0036–7281 (Print))

  44. Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P (2016) Harnessing the immune system to improve cancer therapy. Ann Transl Med 4(14):261–261

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dow SW, Fradkin LG, Liggitt DH, Willson AP, Heath TD, Potter TA (1999) Lipid-DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously. J Immunol 163(3):1552

    Article  CAS  PubMed  Google Scholar 

  46. Dow S (2008) Liposome-nucleic acid immunotherapeutics. Expert Opin Drug Deliv 5(1):11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boukhaled GM, Harding S, Brooks DG (2021) Opposing roles of type I interferons in cancer immunity. Annu Rev Pathol 16(1):167–198

    Article  CAS  PubMed  Google Scholar 

  48. Cao X, Liang Y, Hu Z, Li H, Yang J, Hsu EJ, Zhu J, Zhou J, Fu Y-X (2021) Next generation of tumor-activating type I IFN enhances anti-tumor immune responses to overcome therapy resistance. Nat Commun 12(1):5866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Budhwani M, Mazzieri R, Dolcetti R (2018) Plasticity of type I interferon-mediated responses in cancer therapy: from anti-tumor immunity to resistance. Front Oncol 8:322–322

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu J, Li Z (2021) Resident innate immune cells in the Cornea. Front Immunol. https://doi.org/10.3389/fimmu.2021.620284

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gao A, Hu X-L, Saeed M, Chen B-F, Li Y-P, Yu H-J (2019) Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacol Sin 40(9):1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Galor A, Karp CL, Chhabra S, Barnes S, Alfonso EC (2010) Topical interferon alpha 2b eye-drops for treatment of ocular surface squamous neoplasia: a dose comparison study. Br J Ophthalmol 94(5):551–554

    Article  CAS  PubMed  Google Scholar 

  53. Al Bayyat G, Arreaza-Kaufman D, Venkateswaran N, Galor A, Karp CL (2019) Update on pharmacotherapy for ocular surface squamous neoplasia. Eye Vis 6(1):24

    Article  Google Scholar 

  54. Kozma K, Dömötör ZR, Csutak A, Szabó L, Hegyi P, Erőss B, Helyes Z, Molnár Z, Dembrovszky F, Szalai E (2022) Topical pharmacotherapy for ocular surface squamous neoplasia: systematic review and meta-analysis. Sci Rep 12(1):14221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge and thank the clinical staff of the Colorado State University Veterinary Teaching Hospital who provided care and assisted with procedures described.

Funding

This study was funded by the Charles Shipley Family Foundation and by a grant from the Translational Medicine Institute and CSU Ventures at Colorado State University. Dr. Pezzanite was also supported by NIH grants 5TL1TR002533-02 and 5T32OD010437-19.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LC, KW, BM. All clinical trials and related sample collection were performed by KW, BM. LP performed manuscript writing and data verification. The final version of manuscript was approved by all authors.

Corresponding author

Correspondence to Kathryn L. Wotman.

Ethics declarations

Competing interests

Authors Steven Dow and Lyndah Chow declare that they are among several holders of an issued US patent related to the LTC technology. All other authors declared no potential conflicts of interest.

Conflict of interest

The authors have read the journal’s policy and confirm that the ethical policies of the journal, as noted on the journal’s author guidelines page, have been adhered to. Owners provided consent for enrollment of client-owned patients in this clinical study. SD and LC declare that they are among several holders of an issued US patent related to the LTC technology. All other authors declared no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wotman, K.L., Chow, L., Martabano, B. et al. Novel ocular immunotherapy induces tumor regression in an equine model of ocular surface squamous neoplasia. Cancer Immunol Immunother 72, 1185–1198 (2023). https://doi.org/10.1007/s00262-022-03321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03321-2

Keywords

Navigation