Skip to main content

Advertisement

Log in

Immunotherapy for lung cancer combining the oligodeoxynucleotides of TLR9 agonist and TGF-β2 inhibitor

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumor immunotherapies have shown promising antitumor effects, especially immune checkpoint inhibitors (ICIs). However, only 12.46% of the patients benefit from the ICIs, the rest of them shows limited effects on ICIs or even accelerates the tumor progression due to the lack of the immune cell infiltration and activation in the tumor microenvironment (TME). In this study, we administrated a combination of Toll-like receptor 9 (TLR9) agonist CpG ODN and Transforming growth factor-β2 (TGF-β2) antisense oligodeoxynucleotide TIO3 to mice intraperitoneally once every other day for a total of four injections, and the first injection was 24 h after LLC cell inoculation. We found that the combination induced the formation of TME toward the enrichment and activation of CD8+ T cells and NK cells, accompanied with a marked decrease of TGF-β2. The combined therapy also effectively inhibited the tumor growth and prolonged the survival of the mice, even protected the tumor-free mice from the tumor re-challenge. Both of CpG ODN and TIO3 are indispensable, because replacing CpG ODN with TLR9 inhibitor CCT ODN showed no antitumor effect, CpG ODN or TIO3 alone did not lead to ideal antitumor results. This effect was possibly initiated by the activation of dendritic cells at the tumor site. This systemic antitumor immunotherapy with a combination of the two oligonucleotides (an immune stimulant and an immunosuppressive cytokine inhibitor) before the tumor formation may provide a novel strategy for clinical prevention of the postoperative tumor recurrence.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. de Miguel M, Calvo E (2020) Clinical challenges of immune checkpoint inhibitors. Cancer Cell 38:326–333. https://doi.org/10.1016/j.ccell.2020.07.004

    Article  CAS  PubMed  Google Scholar 

  2. Haslam A, Prasad V (2019) Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2:e192535. https://doi.org/10.1001/jamanetworkopen.2019.2535

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lo Russo G, Facchinetti F, Tiseo M et al (2020) Hyperprogressive disease upon immune checkpoint blockade: focus on non-small cell lung cancer. Curr Oncol Rep 22:41. https://doi.org/10.1007/s11912-020-00908-9

    Article  PubMed  Google Scholar 

  4. Kim Y, Kim CH, Lee HY et al (2019) Comprehensive clinical and genetic characterization of hyperprogression based on volumetry in advanced non-small cell lung cancer treated with immune checkpoint inhibitor. J Thorac Oncol 14:1608–1618. https://doi.org/10.1016/j.jtho.2019.05.033

    Article  CAS  PubMed  Google Scholar 

  5. Vaidya P, Bera K, Patil PD et al (2020) Novel, non-invasive imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade. J Immunother Cancer 8:e001343. https://doi.org/10.1136/jitc-2020-001343

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. https://doi.org/10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barry KC, Hsu J, Broz ML et al (2018) A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med 24:1178–1191. https://doi.org/10.1038/s41591-018-0085-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reardon DA, Brandes AA, Omuro A et al (2020) Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the checkmate 143 phase 3 randomized clinical trial. JAMA Oncol 6:1003–1010. https://doi.org/10.1001/jamaoncol.2020.1024

    Article  PubMed  Google Scholar 

  9. O’Reilly EM, Oh D-Y, Dhani N et al (2019) Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol 5:1431–1438. https://doi.org/10.1001/jamaoncol.2019.1588

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zheng Y, Tian H, Zhou Z et al (2021) A novel immune-related prognostic model for response to immunotherapy and survival in patients with lung adenocarcinoma. Front Cell Dev Biol 9:651406. https://doi.org/10.3389/fcell.2021.651406

    Article  PubMed  PubMed Central  Google Scholar 

  11. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107:4275–4280. https://doi.org/10.1073/pnas.0915174107

    Article  PubMed  PubMed Central  Google Scholar 

  12. Friese C, Harbst K, Borch TH et al (2020) CTLA-4 blockade boosts the expansion of tumor-reactive CD8+ tumor-infiltrating lymphocytes in ovarian cancer. Sci Rep 10:3914. https://doi.org/10.1038/s41598-020-60738-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takeda Y, Kataoka K, Yamagishi J et al (2017) A TLR3-specific adjuvant relieves innate resistance to PD-L1 blockade without cytokine toxicity in tumor vaccine immunotherapy. Cell Rep 19:1874–1887. https://doi.org/10.1016/j.celrep.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  14. Sato-Kaneko F, Yao S, Ahmadi A et al (2017) Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight 2:93397. https://doi.org/10.1172/jci.insight.93397

    Article  PubMed  Google Scholar 

  15. Gallotta M, Assi H, Degagné É et al (2018) Inhaled TLR9 agonist renders lung tumors permissive to PD-1 blockade by promoting optimal CD4+ and CD8+ T-cell interplay. Cancer Res 78:4943–4956. https://doi.org/10.1158/0008-5472.CAN-18-0729

    Article  CAS  PubMed  Google Scholar 

  16. Chao Y, Xu L, Liang C et al (2018) Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat Biomed Eng 2:611–621. https://doi.org/10.1038/s41551-018-0262-6

    Article  CAS  PubMed  Google Scholar 

  17. Kapp K, Volz B, Oswald D et al (2019) Beneficial modulation of the tumor microenvironment and generation of anti-tumor responses by TLR9 agonist lefitolimod alone and in combination with checkpoint inhibitors. Oncoimmunology 8:e1659096. https://doi.org/10.1080/2162402X.2019.1659096

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhuang Y, Li S, Wang H et al (2018) PD-1 blockade enhances radio-immunotherapy efficacy in murine tumor models. J Cancer Res Clin Oncol 144:1909–1920. https://doi.org/10.1007/s00432-018-2723-4

    Article  CAS  PubMed  Google Scholar 

  19. Ribas A, Medina T, Kummar S et al (2018) SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study. Cancer Discov 8:1250–1257. https://doi.org/10.1158/2159-8290.CD-18-0280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haymaker C, Johnson DH, Murthy R et al (2021) Tilsotolimod with ipilimumab drives tumor responses in anti-PD-1 refractory melanoma. Cancer Discov 11:1996–2013. https://doi.org/10.1158/2159-8290.CD-20-1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Diab A, Rahimian S, Haymaker CL et al (2018) A phase 2 study to evaluate the safety and efficacy of Intratumoral (IT) injection of the TLR9 agonist IMO-2125 (IMO) in combination with ipilimumab (ipi) in PD-1 inhibitor refractory melanoma. JCO 36:9515–9515. https://doi.org/10.1200/JCO.2018.36.15_suppl.9515

    Article  Google Scholar 

  22. Butler MO, Robert C, Negrier S et al (2019) ILLUMINATE 301: A randomized phase 3 study of tilsotolimod in combination with ipilimumab compared with ipilimumab alone in patients with advanced melanoma following progression on or after anti-PD-1 therapy. JCO 37:TPS9599–TPS9599. https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS9599

    Article  Google Scholar 

  23. Yang L, Sun L, Wu X et al (2009) Therapeutic injection of C-class CpG ODN in draining lymph node area induces potent activation of immune cells and rejection of established breast cancer in mice. Clin Immunol 131:426–437. https://doi.org/10.1016/j.clim.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  24. Yang M, Yan Y, Fang M et al (2012) MF59 formulated with CpG ODN as a potent adjuvant of recombinant HSP65-MUC1 for inducing anti-MUC1+ tumor immunity in mice. Int Immunopharmacol 13:408–416. https://doi.org/10.1016/j.intimp.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun W, Fang M, Chen Y et al (2016) Delivery system of CpG oligodeoxynucleotides through eliciting an effective T cell immune response against melanoma in mice. J Cancer 7:241–250. https://doi.org/10.7150/jca.12899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Wang L, Wan M et al (2013) Fully phosphorothioate-modified CpG ODN with PolyG motif inhibits the adhesion of B16 melanoma cells in vitro and tumorigenesis in vivo. Nucl Acid Ther 23:253–263. https://doi.org/10.1089/nat.2013.0419

    Article  CAS  Google Scholar 

  27. Manegold C, van Zandwijk N, Szczesna A et al (2012) A phase III randomized study of gemcitabine and cisplatin with or without PF-3512676 (TLR9 agonist) as first-line treatment of advanced non-small-cell lung cancer. Ann Oncol 23:72–77. https://doi.org/10.1093/annonc/mdr030

    Article  CAS  PubMed  Google Scholar 

  28. Thompson JA, Kuzel T, Drucker BJ et al (2009) Safety and efficacy of PF-3512676 for the treatment of stage IV renal cell carcinoma: an open-label, multicenter phase I/II study. Clin Genitourin Cancer 7:E58-65. https://doi.org/10.3816/CGC.2009.n.025

    Article  CAS  PubMed  Google Scholar 

  29. Budhu S, Schaer DA, Li Y et al (2017) Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. Sci Signal 10:eaak9702. https://doi.org/10.1126/scisignal.aak9702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang D, Jiang W, Zhu F et al (2018) Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int J Oncol 53:1193–1203. https://doi.org/10.3892/ijo.2018.4456

    Article  CAS  PubMed  Google Scholar 

  31. Qiu Y, Chen T, Hu R et al (2021) Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res 9:72. https://doi.org/10.1186/s40364-021-00327-3

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jin Y, Zhuang Y, Dong X, Liu M (2021) Development of CpG oligodeoxynucleotide TLR9 agonists in anti-cancer therapy. Expert Rev Anticancer Ther 21:841–851. https://doi.org/10.1080/14737140.2021.1915136

    Article  CAS  PubMed  Google Scholar 

  33. Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348:74–80. https://doi.org/10.1126/science.aaa6204

    Article  CAS  PubMed  Google Scholar 

  34. Huynh LK, Hipolito CJ, Ten Dijke P (2019) A perspective on the development of TGF-β inhibitors for cancer treatment. Biomolecules 9:E743. https://doi.org/10.3390/biom9110743

    Article  CAS  Google Scholar 

  35. Batlle E, Massagué J (2019) Transforming growth factor-β signaling in immunity and cancer. Immunity 50:924–940. https://doi.org/10.1016/j.immuni.2019.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu J, Fu R, Liu Z et al (2017) Cell proliferation downregulated by TGF-β2-triggered G1/S checkpoint in clinical CAFs. Cell Cycle 16:172–178. https://doi.org/10.1080/15384101.2016.1253641

    Article  CAS  PubMed  Google Scholar 

  37. D’Cruz OJ, Qazi S, Hwang L et al (2018) Impact of targeting transforming growth factor β-2 with antisense OT-101 on the cytokine and chemokine profile in patients with advanced pancreatic cancer. Onco Targets Ther 11:2779–2796. https://doi.org/10.2147/OTT.S161905

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tu Y, Han J, Dong Q et al (2020) TGF-β2 is a prognostic biomarker correlated with immune cell infiltration in colorectal cancer: a STROBE-compliant article. Medicine (Baltimore) 99:e23024. https://doi.org/10.1097/MD.0000000000023024

    Article  CAS  PubMed  Google Scholar 

  39. Qiu B, Zhang D, Wang C et al (2011) IL-10 and TGF-β2 are overexpressed in tumor spheres cultured from human gliomas. Mol Biol Rep 38:3585–3591. https://doi.org/10.1007/s11033-010-0469-4

    Article  CAS  PubMed  Google Scholar 

  40. Hou W, Zhang H, Bai X et al (2017) Suppressive role of miR-592 in breast cancer by repressing TGF-β2. Oncol Rep 38:3447–3454. https://doi.org/10.3892/or.2017.6029

    Article  CAS  PubMed  Google Scholar 

  41. Schlingensiepen K-H, Jaschinski F, Lang SA et al (2011) Transforming growth factor-beta 2 gene silencing with trabedersen (AP 12009) in pancreatic cancer. Cancer Sci 102:1193–1200. https://doi.org/10.1111/j.1349-7006.2011.01917.x

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi K, Akatsu Y, Podyma-Inoue KA et al (2020) Targeting all transforming growth factor-β isoforms with an Fc chimeric receptor impairs tumor growth and angiogenesis of oral squamous cell cancer. J Biol Chem 295:12559–12572. https://doi.org/10.1074/jbc.RA120.012492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Navab R, Strumpf D, Bandarchi B et al (2011) Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci USA 108:7160–7165. https://doi.org/10.1073/pnas.1014506108

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ting HJ, Deep G, Jain AK et al (2015) Silibinin prevents prostate cancer cell-mediated differentiation of naïve fibroblasts into cancer-associated fibroblast phenotype by targeting TGF β2. Mol Carcinog 54:730–741. https://doi.org/10.1002/mc.22135

    Article  CAS  PubMed  Google Scholar 

  45. Mariathasan S, Turley SJ, Nickles D et al (2018) TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544–548. https://doi.org/10.1038/nature25501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tauriello DVF, Palomo-Ponce S, Stork D et al (2018) TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554:538–543. https://doi.org/10.1038/nature25492

    Article  CAS  PubMed  Google Scholar 

  47. Bai X, Yi M, Jiao Y et al (2019) Blocking TGF-β signaling to enhance the efficacy of immune checkpoint inhibitor. Onco Targets Ther 12:9527–9538. https://doi.org/10.2147/OTT.S224013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Colak S, Ten Dijke P (2017) Targeting TGF-β signaling in cancer. Trends Cancer 3:56–71. https://doi.org/10.1016/j.trecan.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  49. Vander Ark A, Cao J, Li X (2018) TGF-β receptors: in and beyond TGF-β signaling. Cell Signal 52:112–120. https://doi.org/10.1016/j.cellsig.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  50. Yoshimura A, Muto G (2011) TGF-β function in immune suppression. Curr Top Microbiol Immunol 350:127–147. https://doi.org/10.1007/82_2010_87

    Article  CAS  PubMed  Google Scholar 

  51. Travis MA, Sheppard D (2014) TGF-β activation and function in immunity. Annu Rev Immunol 32:51–82. https://doi.org/10.1146/annurev-immunol-032713-120257

    Article  CAS  PubMed  Google Scholar 

  52. Ortega-Francisco S, de la Fuente-Granada M, Alvarez Salazar EK et al (2017) TβRIII is induced by TCR signaling and downregulated in FoxP3+ regulatory T cells. Biochem Biophys Res Commun 494:82–87. https://doi.org/10.1016/j.bbrc.2017.10.081

    Article  CAS  PubMed  Google Scholar 

  53. Hanks BA, Holtzhausen A, Evans KS et al (2013) Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment. J Clin Invest 123:3925–3940. https://doi.org/10.1172/JCI65745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pakula R, Melchior A, Denys A et al (2007) Syndecan-1/CD147 association is essential for cyclophilin B-induced activation of p44/42 mitogen-activated protein kinases and promotion of cell adhesion and chemotaxis. Glycobiology 17:492–503. https://doi.org/10.1093/glycob/cwm009

    Article  CAS  PubMed  Google Scholar 

  55. Miyazono K, Katsuno Y, Koinuma D et al (2018) Intracellular and extracellular TGF-β signaling in cancer: some recent topics. Front Med 12:387–411. https://doi.org/10.1007/s11684-018-0646-8

    Article  PubMed  Google Scholar 

  56. Terabe M, Robertson FC, Clark K et al (2017) Blockade of only TGF-β 1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy. Oncoimmunology 6:e1308616. https://doi.org/10.1080/2162402X.2017.1308616

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jung S, Park Y-K, Lee H et al (2010) TGF-beta-treated antigen presenting cells suppress collagen- induced arthritis through the promotion of Th2 responses. Exp Mol Med 42:187–194. https://doi.org/10.3858/emm.2010.42.3.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trempolec N, Degavre C, Doix B et al (2020) Acidosis-induced TGF-β2 production promotes lipid droplet formation in dendritic cells and alters their potential to support anti-mesothelioma T Cell response. Cancers (Basel) 12:E1284. https://doi.org/10.3390/cancers12051284

    Article  CAS  Google Scholar 

  59. Nakayama K, Nishijo T, Miyazawa M et al (2022) Hapten sensitization to vaginal mucosa induces less recruitment of dendritic cells accompanying TGF-β-expressing CD206+ cells compared with skin. Immun Inflamm Dis 10:e605. https://doi.org/10.1002/iid3.605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oh S, Kim E, Kang D et al (2013) Transforming growth factor-β gene silencing using adenovirus expressing TGF-β1 or TGF-β2 shRNA. Cancer Gene Ther 20:94–100. https://doi.org/10.1038/cgt.2012.90

    Article  CAS  PubMed  Google Scholar 

  61. Jaschinski F, Rothhammer T, Jachimczak P et al (2011) The antisense oligonucleotide trabedersen (AP 12009) for the targeted inhibition of TGF-β2. Curr Pharm Biotechnol 12:2203–2213. https://doi.org/10.2174/138920111798808266

    Article  CAS  PubMed  Google Scholar 

  62. de Gramont A, Faivre S, Raymond E (2017) Novel TGF-β inhibitors ready for prime time in onco-immunology. Oncoimmunology 6:e1257453. https://doi.org/10.1080/2162402X.2016.1257453

    Article  CAS  PubMed  Google Scholar 

  63. Kim B-G, Malek E, Choi SH et al (2021) Novel therapies emerging in oncology to target the TGF-β pathway. J Hematol Oncol 14:55. https://doi.org/10.1186/s13045-021-01053-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Teicher BA (2021) TGFβ-directed therapeutics: 2020. Pharmacol Ther 217:107666. https://doi.org/10.1016/j.pharmthera.2020.107666

    Article  CAS  PubMed  Google Scholar 

  65. Brandes AA, Carpentier AF, Kesari S et al (2016) A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol 18:1146–1156. https://doi.org/10.1093/neuonc/now009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Donkor MK, Sarkar A, Li MO (2012) Tgf-β1 produced by activated CD4(+) T cells antagonizes T Cell surveillance of tumor development. Oncoimmunology 1:162–171. https://doi.org/10.4161/onci.1.2.18481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun R, Sun L, Bao M et al (2010) A human microsatellite DNA-mimicking oligodeoxynucleotide with CCT repeats negatively regulates TLR7/9-mediated innate immune responses via selected TLR pathways. Clin Immunol 134:262–276. https://doi.org/10.1016/j.clim.2009.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tu L, Sun X, Yang L et al (2020) TGF-β2 interfering oligonucleotides used as adjuvants for microbial vaccines. J Leukoc Biol 108:1673–1692. https://doi.org/10.1002/JLB.5A0420-491R

    Article  CAS  PubMed  Google Scholar 

  69. Li X, Shao C, Shi Y, Han W (2018) Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol 11:31. https://doi.org/10.1186/s13045-018-0578-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang F-Y, Mei W-L, Li Y-N et al (2012) Toxicarioside A inhibits tumor growth and angiogenesis: involvement of TGF-β/endoglin signaling. PLoS ONE 7:e50351. https://doi.org/10.1371/journal.pone.0050351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Furuta C, Miyamoto T, Takagi T et al (2015) Transforming growth factor-β signaling enhancement by long-term exposure to hypoxia in a tumor microenvironment composed of Lewis lung carcinoma cells. Cancer Sci 106:1524–1533. https://doi.org/10.1111/cas.12773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang L, Tu L, Zhao P et al (2019) Attenuation of interferon regulatory factor 7 activity in local infectious sites of trachea and lung for preventing the development of acute lung injury caused by influenza A virus. Immunology 157:37–51. https://doi.org/10.1111/imm.13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen Q, Wang C, Zhang X et al (2019) In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol 14:89–97. https://doi.org/10.1038/s41565-018-0319-4

    Article  CAS  PubMed  Google Scholar 

  74. Harrington BS, Ozaki MK, Caminear MW et al (2020) Drugs targeting tumor-initiating cells prolong survival in a post-surgery. Post-Chemother Ovar Cancer Relapse Model Cancers (Basel) 12:E1645. https://doi.org/10.3390/cancers12061645

    Article  CAS  Google Scholar 

  75. Hochweller K, Striegler J, Hämmerling GJ, Garbi N (2008) A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur J Immunol 38:2776–2783. https://doi.org/10.1002/eji.200838659

    Article  CAS  PubMed  Google Scholar 

  76. Guiducci C, Vicari AP, Sangaletti S et al (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446. https://doi.org/10.1158/0008-5472.CAN-04-4262

    Article  CAS  PubMed  Google Scholar 

  77. Koster BD, López González M, van den Hout MF et al (2021) T cell infiltration on local CpG-B delivery in early-stage melanoma is predominantly related to CLEC9A+CD141+ cDC1 and CD14+ antigen-presenting cell recruitment. J Immunother Cancer 9:e001962. https://doi.org/10.1136/jitc-2020-001962

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lin Lv and Brandon Smith for polishing the English of the whole manuscript; Peiyan Zhao, Shengnan Wang, Mengru Zhu, Feiyu Lu, Mengyuan Kou, Yangyang Wang, Baichao Sun and Zhengyi Sun for technical assistance; Lei Zhou for her support in the use of confocal microscopy. This work was supported by the National Nature Science Foundation of China (8147888).

Author information

Authors and Affiliations

Authors

Contributions

YY (Yunpeng Yao) was the main researcher for this study including the experiment design and operation, data analysis, and manuscript writing; JL, KQ, ZW, and YW participated in operation for some experiments including flow cytometry, and mouse experiments. WL provided writing of the manuscript. YY (Yongli Yu) and LW provided research ideas and funds and involved in writing and revising of the manuscript.

Corresponding authors

Correspondence to Yongli Yu or Liying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1214 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Li, J., Qu, K. et al. Immunotherapy for lung cancer combining the oligodeoxynucleotides of TLR9 agonist and TGF-β2 inhibitor. Cancer Immunol Immunother 72, 1103–1120 (2023). https://doi.org/10.1007/s00262-022-03315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03315-0

Keywords

Navigation