Skip to main content

Advertisement

Log in

Extracellular vesicles derived from M2-polarized tumor-associated macrophages promote immune escape in ovarian cancer through NEAT1/miR-101-3p/ZEB1/PD-L1 axis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Evidence has been presented demonstrating that CD8+ T cells confer anti-cancer effects, which offers a promising approach to enhance immunotherapy. M2-polarized tumor-associated macrophages (TAMs) could transfer RNA to cancer cells by secreting extracellular vesicles (EVs) and stimulate immune escape of cancer cells. Thus, the current study aimed at exploring how EVs derived from M2-polarized TAMs (M2-TAMs) affected the proliferation of ovarian cancer (OC) cells and apoptosis of CD8+ T cells. M2-TAMs were observed in OC tissues, which promoted proliferation of OC cells and CD8+ T cell apoptosis by secreting EVs. OC-associated differentially expressed gene NEAT1 was screened by bioinformatics analysis. The in vitro and in vivo effects of TAM-EVs-NEAT1 and its regulatory mechanism were assessed using gain- and loss-of-function assays in co-culture systems of TAMs-derived EVs, OC cells, and CD8+ T cells and in tumor-bearing mice. NEAT1 was highly expressed in M2-derived EVs and OC cells co-cultured with M2-derived EVs. NEAT1 sponged miR-101-3p to increase ZEB1 and PD-L1 expression. In vitro and in vivo assays confirmed the tumor-supporting effects of NEAT1 delivered by M2-derived EVs on OC cell proliferation and CD8+ T cell apoptosis as well as tumor growth. Collectively, M2-derived EVs containing NEAT1 exerted a tumor-promoting role in OC via the miR-101-3p/ZEB1/PD-L1 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data and materials of the study can be obtained from the corresponding author upon request.

References

  1. Webb PM, Jordan SJ (2017) Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol 41:3–14. https://doi.org/10.1016/j.bpobgyn.2016.08.006

    Article  PubMed  Google Scholar 

  2. Yigit R, Massuger LF, Figdor CG, Torensma R (2010) Ovarian cancer creates a suppressive microenvironment to escape immune elimination. Gynecol Oncol 117:366–372. https://doi.org/10.1016/j.ygyno.2010.01.019

    Article  CAS  PubMed  Google Scholar 

  3. Farhood B, Najafi M, Mortezaee K (2019) CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 234:8509–8521. https://doi.org/10.1002/jcp.27782

    Article  CAS  PubMed  Google Scholar 

  4. Barber E, Matei D (2021) Immunotherapy in ovarian cancer: we are not there yet. Lancet Oncol 22:903–905. https://doi.org/10.1016/S1470-2045(21)00303-X

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shu Y, Cheng P (2020) Targeting tumor-associated macrophages for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 1874:188434. https://doi.org/10.1016/j.bbcan.2020.188434

    Article  CAS  PubMed  Google Scholar 

  6. Nowak M, Klink M (2020) The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells. https://doi.org/10.3390/cells9051299

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhou J, Li X, Wu X, Zhang T, Zhu Q, Wang X, Wang H, Wang K, Lin Y, Wang X (2018) Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res 6:1578–1592. https://doi.org/10.1158/2326-6066.CIR-17-0479

    Article  CAS  PubMed  Google Scholar 

  8. Cocozza F, Grisard E, Martin-Jaular L, Mathieu M, Thery C (2020) SnapShot: extracellular vesicles. Cell 182(262–262):e261. https://doi.org/10.1016/j.cell.2020.04.054

    Article  CAS  Google Scholar 

  9. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ (2018) Extracellular vesicles in cancer–implications for future improvements in cancer care. Nat Rev Clin Oncol 15:617–638. https://doi.org/10.1038/s41571-018-0036-9

    Article  CAS  PubMed  Google Scholar 

  10. Ghafouri-Fard S, Taheri M (2019) Nuclear enriched abundant transcript 1 (NEAT1): a long non-coding RNA with diverse functions in tumorigenesis. Biomed Pharmacother 111:51–59. https://doi.org/10.1016/j.biopha.2018.12.070

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Zhang S, Du K et al (2021) Gastric cancer-secreted exosomal X26nt increases angiogenesis and vascular permeability by targeting VE-cadherin. Cancer Sci 112:1839–1852. https://doi.org/10.1111/cas.14740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yin L, Wang Y (2021) Long non-coding RNA NEAT1 facilitates the growth, migration, and invasion of ovarian cancer cells via the let-7 g/MEST/ATGL axis. Cancer Cell Int 21:437. https://doi.org/10.1186/s12935-021-02018-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao Y, Yu Z, Ma R et al (2021) lncRNA-Xist/miR-101-3p/KLF6/C/EBPalpha axis promotes TAM polarization to regulate cancer cell proliferation and migration. Mol Ther Nucleic Acids 23:536–551. https://doi.org/10.1016/j.omtn.2020.12.005

    Article  CAS  PubMed  Google Scholar 

  14. Zhao E, Maj T, Kryczek I et al (2016) Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol 17:95–103. https://doi.org/10.1038/ni.3313

    Article  CAS  PubMed  Google Scholar 

  15. Liang Y, Liu Y, Zhang Q, Zhang H, Du J (2021) Tumor-derived extracellular vesicles containing microRNA-1290 promote immune escape of cancer cells through the Grhl2/ZEB1/PD-L1 axis in gastric cancer. Transl Res 231:102–112. https://doi.org/10.1016/j.trsl.2020.12.003

    Article  CAS  PubMed  Google Scholar 

  16. Li CW, Lim SO, Xia W et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632. https://doi.org/10.1038/ncomms12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shang A, Wang W, Gu C et al (2019) Long non-coding RNA HOTTIP enhances IL-6 expression to potentiate immune escape of ovarian cancer cells by upregulating the expression of PD-L1 in neutrophils. J Exp Clin Cancer Res 38:411. https://doi.org/10.1186/s13046-019-1394-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xue C, Xu Y, Ye W, Xie Q, Gao H, Xu B, Zhang D, Jiang J (2020) Expression of PD-L1 in ovarian cancer and its synergistic antitumor effect with PARP inhibitor. Gynecol Oncol 157:222–233. https://doi.org/10.1016/j.ygyno.2019.12.012

    Article  CAS  PubMed  Google Scholar 

  19. Qu QX, Xie F, Huang Q, Zhang XG (2017) Membranous and cytoplasmic expression of PD-L1 in ovarian cancer cells. Cell Physiol Biochem 43:1893–1906. https://doi.org/10.1159/000484109

    Article  CAS  PubMed  Google Scholar 

  20. Lu J, Liu QH, Wang F, Tan JJ, Deng YQ, Peng XH, Liu X, Zhang B, Xu X, Li XP (2018) Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma. J Exp Clin Cancer Res 37:147. https://doi.org/10.1186/s13046-018-0814-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao L, Liu Y, Zhang J, Liu Y, Qi Q (2019) LncRNA SNHG14/miR-5590-3p/ZEB1 positive feedback loop promoted diffuse large B cell lymphoma progression and immune evasion through regulating PD-1/PD-L1 checkpoint. Cell Death Dis 10:731. https://doi.org/10.1038/s41419-019-1886-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lechner MG, Megiel C, Russell SM, Bingham B, Arger N, Woo T, Epstein AL (2011) Functional characterization of human Cd33+ and Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J Transl Med 9:90. https://doi.org/10.1186/1479-5876-9-90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lesokhin AM, Hohl TM, Kitano S et al (2012) Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Res 72:876–886. https://doi.org/10.1158/0008-5472.CAN-11-1792

    Article  CAS  PubMed  Google Scholar 

  24. Zhu X, Shen H, Yin X, Yang M, Wei H, Chen Q, Feng F, Liu Y, Xu W, Li Y (2019) Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J Exp Clin Cancer Res 38:81. https://doi.org/10.1186/s13046-019-1095-1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li X, Tang M (2020) Exosomes released from M2 macrophages transfer miR-221-3p contributed to EOC progression through targeting CDKN1B. Cancer Med 9:5976–5988. https://doi.org/10.1002/cam4.3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Wang Y, Fu X, Lu Z (2018) Long non-coding RNA NEAT1 promoted ovarian cancer cells’ metastasis through regulation of miR-382-3p/ROCK1 axial. Cancer Sci 109:2188–2198. https://doi.org/10.1111/cas.13647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou D, Gu J, Wang Y, Wu H, Cheng W, Wang Q, Zheng G, Wang X (2021) Long non-coding RNA NEAT1 transported by extracellular vesicles contributes to breast cancer development by sponging microRNA-141-3p and regulating KLF12. Cell Biosci 11:68. https://doi.org/10.1186/s13578-021-00556-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu H, Sun X, Huang Y, Si Q, Li M (2020) Long noncoding RNA NEAT1 modifies cell proliferation, colony formation, apoptosis, migration and invasion via the miR4500/BZW1 axis in ovarian cancer. Mol Med Rep 22:3347–3357. https://doi.org/10.3892/mmr.2020.11408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. An J, Lv W, Zhang Y (2017) LncRNA NEAT1 contributes to paclitaxel resistance of ovarian cancer cells by regulating ZEB1 expression via miR-194. Onco Targets Ther 10:5377–5390. https://doi.org/10.2147/OTT.S147586

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu Y, Xu L, Zheng J, Geng L, Zhao S (2017) MiR-101 inhibits ovarian carcinogenesis by repressing the expression of brain-derived neurotrophic factor. FEBS Open Bio 7:1258–1266. https://doi.org/10.1002/2211-5463.12257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liang H, Yu T, Han Y et al (2018) LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer 17:119. https://doi.org/10.1186/s12943-018-0870-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cui Y, Qin L, Tian D, Wang T, Fan L, Zhang P, Wang Z (2018) ZEB1 promotes chemoresistance to cisplatin in ovarian cancer cells by suppressing SLC3A2. Chemotherapy 63:262–271. https://doi.org/10.1159/000493864

    Article  CAS  PubMed  Google Scholar 

  33. Zhan FL, Chen CF, Yao MZ (2020) LncRNA TUG1 facilitates proliferation, invasion and stemness of ovarian cancer cell via miR-186-5p/ZEB1 axis. Cell Biochem Funct 38:1069–1078. https://doi.org/10.1002/cbf.3544

    Article  CAS  PubMed  Google Scholar 

  34. Cortes M, Sanchez-Moral L, de Barrios O et al (2017) Tumor-associated macrophages (TAMs) depend on ZEB1 for their cancer-promoting roles. EMBO J 36:3336–3355. https://doi.org/10.15252/embj.201797345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lv H, Lv G, Chen C et al (2021) NAD(+) metabolism maintains inducible PD-L1 expression to drive tumor immune evasion. Cell Metab 33(110–127):e115. https://doi.org/10.1016/j.cmet.2020.10.021

    Article  CAS  Google Scholar 

  36. Zhang H, Qin G, Zhang C et al (2021) TRAIL promotes epithelial-to-mesenchymal transition by inducing PD-L1 expression in esophageal squamous cell carcinomas. J Exp Clin Cancer Res 40:209. https://doi.org/10.1186/s13046-021-01972-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu L, Ling W, Ruan Z (2021) TAM-derived extracellular vesicles containing microRNA-29a-3p explain the deterioration of ovarian cancer. Mol Ther Nucleic Acids 25:468–482. https://doi.org/10.1016/j.omtn.2021.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

YW and LY contributed to the conception and design of the study; YW and LY contributed to the acquisition of data; YW and LY contributed to the analysis and interpretation of data; YW and LY contributed to drafting the article; YW and LY contributed to revising the article critically for important intellectual content; All of the authors approved the final version to be submitted.

Corresponding author

Correspondence to Yu Wang.

Ethics declarations

Conflict of interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 205 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Wang, Y. Extracellular vesicles derived from M2-polarized tumor-associated macrophages promote immune escape in ovarian cancer through NEAT1/miR-101-3p/ZEB1/PD-L1 axis. Cancer Immunol Immunother 72, 743–758 (2023). https://doi.org/10.1007/s00262-022-03305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03305-2

Keywords

Navigation