Skip to main content

Advertisement

Log in

Combination immunotherapy including OncoVEXmGMCSF creates a favorable tumor immune micro-environment in transgenic BRAF murine melanoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Talimogene Laherparepvec (OncoVEXmGMCSF), an oncolytic virus, immune checkpoint inhibitor anti-programmed cell death protein 1 (anti-PD1), and BRAF inhibition (BRAFi), are all clinically approved for treatment of melanoma patients and are effective through diverse mechanisms of action. Individually, these therapies also have an effect on the tumor immune microenvironment (TIME). Evaluating the combination effect of these three therapies on the TIME can help determine when combination therapy is most appropriate for further study. In this study, we use a transgenic murine melanoma model (Tyr::CreER; BRAFCA/+; PTENflox/flox), to evaluate the TIME in response to combinations of BRAFi, anti-PD1, and OncoVEXmGMCSF. We find that mice treated with the triple combination BRAFi + anti-PD1 + OncoVEXmGMCSF have decreased tumor growth compared to BRAFi alone and prolonged survival compared to control. Flow cytometry shows an increase in percent CD8 + /CD3 + cytotoxic T Lymphocytes (CTLs) and a decrease in percent FOXP3 + /CD4 + T regulatory cells (Tregs) in tumors treated with OncoVEXmGMCSF compared to mice not treated with OncoVEXmGMCSF. Immunogenomic analysis at 30d post-treatment shows an increase in Th1 and interferon-related genes in mice receiving OncoVEXmGMCSF + BRAFi. In summary, treatment with combination BRAFi + anti-PD1 + OncoVEXmGMCSF is more effective than any single treatment in controlling tumor growth, and groups receiving OncoVEXmGMCSF had more tumoral infiltration of CTLs and less intratumoral Tregs in the TIME. This study provides rational basis to combine targeted agents, oncolytic viral therapy, and checkpoint inhibitors in the treatment of melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All expression data is available in supplemental files. For any other data please email corresponding author.

Abbreviations

4-HT:

4-Hydroxytamoxifen

anti-PD1:

Anti-programmed cell death protein 1

ASBL-2:

Animal biosafety level 2

BRAFi:

BRAF inhibition

CTLs:

Cytotoxic T Lymphocytes

CA:

Conditionally active

CUIMC:

Columbia university irving medical center

FFPE:

Formalin-fixed paraffin-embedded

gC:

Glycoprotein C

GM-CSF:

Human granulocyte–macrophage colony-stimulating factor

HSV-1:

Herpes simplex virus type 1

IACUC:

Institutional animal care and use committee

IP:

Intraperitoneal injection

IT:

Intratumoral injection

PBS:

Phosphate buffered saline

RT-PCR:

Transcription-polymerase chain reaction

TIME:

Tumor immune microenvironment

Tregs:

T regulatory cells

OncoVEXmGMCSF :

Talimogene laherparepvec

References

  1. Ascierto PA, Kirkwood JM, Grob JJ et al (2012) The role of BRAF V600 mutation in melanoma. J Transl Med 10:85. https://doi.org/10.1186/1479-5876-10-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dummer R, Ascierto PA, Gogas HJ et al (2018) Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 19:1315–1327. https://doi.org/10.1016/S1470-2045(18)30497-2

    Article  CAS  PubMed  Google Scholar 

  3. Ascierto PA, Ferrucci PF, Fisher R et al (2019) Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat Med 25:941–946. https://doi.org/10.1038/s41591-019-0448-9

    Article  CAS  PubMed  Google Scholar 

  4. Huynh S, Mortier L, Dutriaux C et al (2020) Combined Therapy with Anti-PD1 and BRAF and/or MEK Inhibitor for Advanced Melanoma: A Multicenter Cohort Study. Cancers (Basel) 12:1666. https://doi.org/10.3390/cancers12061666

    Article  CAS  Google Scholar 

  5. Sun L, Funchain P, Song JM, Rayman P, Tannenbaum C, Ko J, McNamara M, Marcela Diaz-Montero C, Gastman B (2018) Talimogene Laherparepvec combined with anti-PD-1 based immunotherapy for unresectable stage III-IV melanoma: a case series. J Immunother Cancer 6:36. https://doi.org/10.1186/s40425-018-0337-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dummer R, Lebbe C, Atkinson V et al (2020) Combined PD-1, BRAF and MEK inhibition in advanced BRAF-mutant melanoma: safety run-in and biomarker cohorts of COMBI-i. Nat Med 26:1557–1563. https://doi.org/10.1038/s41591-020-1082-2

    Article  CAS  PubMed  Google Scholar 

  7. Bayan CY, Lopez AT, Gartrell RD et al (2018) The Role of Oncolytic Viruses in the Treatment of Melanoma. Curr Oncol Rep 20:80. https://doi.org/10.1007/s11912-018-0729-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bommareddy PK, Patel A, Hossain S, Kaufman HL (2017) Talimogene Laherparepvec (T-VEC) and Other Oncolytic Viruses for the Treatment of Melanoma. Am J Clin Dermatol 18:1–15. https://doi.org/10.1007/s40257-016-0238-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grigg C, Blake Z, Gartrell R, Sacher A, Taback B, Saenger Y (2016) Talimogene laherparepvec (T-Vec) for the treatment of melanoma and other cancers. Semin Oncol 43:638–646. https://doi.org/10.1053/j.seminoncol.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  10. Liu BL, Robinson M, Han ZQ et al (2003) ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10:292–303. https://doi.org/10.1038/sj.gt.3301885

    Article  CAS  PubMed  Google Scholar 

  11. Sivendran S, Pan M, Kaufman HL, Saenger Y (2010) Herpes simplex virus oncolytic vaccine therapy in melanoma. Expert Opin Biol Ther 10:1145–1153. https://doi.org/10.1517/14712598.2010.495383

    Article  CAS  PubMed  Google Scholar 

  12. Andtbacka RHI, Collichio F, Harrington KJ, Middleton MR, Downey G, Hrling K, Kaufman HL (2019) Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer 7:145. https://doi.org/10.1186/s40425-019-0623-z

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17:718–730. https://doi.org/10.1245/s10434-009-0809-6

    Article  PubMed  Google Scholar 

  14. Audrey-Bayan C, Trager MH, Gartrell-Corrado RD et al (2020) Distinguishing melanophages from tumor in melanoma patients treated with talimogene laherparepvec. Melanoma Res 30:410–415. https://doi.org/10.1097/CMR.0000000000000661

    Article  CAS  PubMed  Google Scholar 

  15. Boni A, Cogdill AP, Dang P et al (2010) Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70:5213–5219. https://doi.org/10.1158/0008-5472.CAN-10-0118

    Article  CAS  PubMed  Google Scholar 

  16. Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, Thompson JF, Kefford RF, Hersey P, Scolyer RA (2012) Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res : Off J Am Assoc Cancer Res 18:1386–1394. https://doi.org/10.1158/1078-0432.CCR-11-2479

    Article  CAS  Google Scholar 

  17. Crespo-Rodriguez E, Bergerhoff K, Bozhanova G et al (2020) Combining BRAF inhibition with oncolytic herpes simplex virus enhances the immune-mediated antitumor therapy of BRAF-mutant thyroid cancer. J Immunother Cancer 8:e000698. https://doi.org/10.1136/jitc-2020-000698

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bommareddy PK, Aspromonte S, Zloza A, Rabkin SD, Kaufman HL (2018) MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci Transl Med. 10:417. https://doi.org/10.1126/scitranslmed.aau0417

    Article  CAS  Google Scholar 

  19. Roulstone V, Pedersen M, Kyula J et al (2015) BRAF- and MEK-targeted small molecule inhibitors exert enhanced antimelanoma effects in combination with oncolytic reovirus through ER stress. Mol Ther 23:931–942. https://doi.org/10.1038/mt.2015.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silva JM, Bulman C, McMahon M (2014) BRAFV600E cooperates with PI3K signaling, independent of AKT, to regulate melanoma cell proliferation. Mol Cancer Res 12:447–463. https://doi.org/10.1158/1541-7786.MCR-13-0224-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dankort D, Curley DP, Cartlidge RA et al (2009) Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41:544–552. https://doi.org/10.1038/ng.356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meeth K, Wang JX, Micevic G, Damsky W, Bosenberg MW (2016) The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell Melanoma Res 29:590–597. https://doi.org/10.1111/pcmr.12498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dobrovolny PL, Bess D (2011) Optimized PCR-based detection of mycoplasma. J Vis Exp. https://doi.org/10.3791/3057

    Article  PubMed  PubMed Central  Google Scholar 

  24. Miller CG, Krummenacher C, Eisenberg RJ et al (2001) Development of a syngenic murine B16 cell line-derived melanoma susceptible to destruction by neuroattenuated HSV-1. Mol Ther 3:160–168. https://doi.org/10.1006/mthe.2000.0240

    Article  CAS  PubMed  Google Scholar 

  25. Abdoli S, Roohvand F, Teimoori-Toolabi L et al (2019) Cytotoxic effect of dual fluorescent-labeled oncolytic herpes simplex virus type 1 on mouse tumorigenic cell lines. Res Pharm Sci 14:27–35. https://doi.org/10.4103/1735-5362.251850

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ribas A, Dummer R, Puzanov I et al (2017) Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell 170(1109–19):e10. https://doi.org/10.1016/j.cell.2017.08.027

    Article  CAS  Google Scholar 

  27. Ackerman A, Klein O, McDermott DF et al (2014) Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer 120:1695–1701. https://doi.org/10.1002/cncr.28620

    Article  CAS  PubMed  Google Scholar 

  28. Ribas A, Hodi FS, Lawrence DP et al (2016) Pembrolizumab (pembro) in combination with dabrafenib (D) and trametinib (T) for BRAF-mutant advanced melanoma: phase 1 KEYNOTE-022 study. J Clin Oncol. 34:3014. https://doi.org/10.1200/JCO.2016.34.15_suppl.3014

    Article  Google Scholar 

  29. Pelster MS, Amaria RN (2019) Combined targeted therapy and immunotherapy in melanoma: a review of the impact on the tumor microenvironment and outcomes of early clinical trials. Ther Adv Med Oncol 11:1758835919830826. https://doi.org/10.1177/1758835919830826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the Human Immune Monitoring Core (HIMC) and Molecular Pathology Core at Columbia University Irving Medical Center for their help in processing the samples. We would also like to thank the Institute of Comparative Medicine for their help in caring for the animals.

Funding

The authors of this publication were supported by the National Institutes of Health through Grant Numbers R01FD006108, Project 1R01CA260375-01 (Y.M. Saenger), and KL2TR001874 (R.D. Gartrell). F. Lozano is supported by Spanish Ministerio de Economía y Competitividad (MINECO) through grant SAF-2016–80535-R co-financed by European Development Regional Fund. I. Simoes was supported by Fundação para a Ciência e a Tecnologia through a fellowship (SFRH/ BD/75738/2011). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Yvonne Saenger is also supported by an Irving Assistant Professorship at Columbia University’s NIH/NCATS CTSA Program hub: UL1TR001873 and the Amgen-CUMC-MRA (Melanoma Research Alliance) Established Investigator Academic-Industry Partnership Award. Robyn Gartrell is also supported by Swim Across America. The funding sources had no role preparation of the manuscript or the decision to submit for publication.

Author information

Authors and Affiliations

Authors

Contributions

RG, ZB, and YS contributed to study design and conception and developed the first draft of the manuscript. ER, RPL, SW, MM, HM, SW, and BF contributed to material preparation and creation of figures and tables. Data collection and analysis were performed by RG, ZB, FL, CC, and YS. RG, ZB, IS, CE, YF, DD, LB, GF, HM, ER, SW, BF, BH, and YS discussed the manuscript sections and contributed with updated references. All authors commented on previous versions of the manuscript and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Yvonne M. Saenger.

Ethics declarations

Conflict of interest:

Authors have no disclosures.

Ethical Approval

All animal experiments were performed in accordance with institutional and national guidelines and were approved by the Institutional Animal Care and Use Committee (IACUC) at Columbia University Irving Medical Center (CUIMC).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gartrell, R.D., Blake, Z., Rizk, E.M. et al. Combination immunotherapy including OncoVEXmGMCSF creates a favorable tumor immune micro-environment in transgenic BRAF murine melanoma. Cancer Immunol Immunother 71, 1837–1849 (2022). https://doi.org/10.1007/s00262-021-03088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03088-y

Keywords

Navigation