Skip to main content

Advertisement

Log in

Comprehensive characterization of tumor immune landscape following oncolytic virotherapy by single-cell RNA sequencing

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

An important mechanism of oncolytic virotherapy in ameliorating cancer immunotherapy is by inducing significant changes in the immune landscape in the tumor microenvironment (TME). Despite this notion and the potential therapeutic implications, a comprehensive analysis of the immune changes in carcinomas induced by virotherapy has not yet been elucidated. We conducted single-cell RNA sequencing analysis on carcinomas treated with an HSV-2-based oncolytic virus to characterize the immunogenic changes in the TME. We specifically analyzed and compared the immune cell composition between viral treated and untreated tumors. We also applied CellChat to analyze the complex interactions among the infiltrated immune cells. Our data revealed significant infiltration of B cells in addition to other important immune cells, including CD4+, CD8+, and NK cells following virotherapy. Further analysis identified distinct subset compositions of the infiltrated immune cells and their activation status upon virotherapy. The intensive interactions among the infiltrated immune cells as revealed by CellChat analysis may further shape the immune landscape in favor of generating antitumor immunity. Our findings will facilitate the design of new strategies in incorporating immunotherapy into virotherapy for clinical translation. Moreover, the significant infiltration of B cells makes it suitable for combining virotherapy with immune checkpoint inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. The raw scRNA-seq data is available on the GEO database (GEO accession number GSE186548). The materials will be available upon request with a simple MTA.

References

  1. Conry RM, Westbrook B, McKee S, Norwood TG (2018) Talimogene laherparepvec: First in class oncolytic virotherapy. Hum Vaccin Immunother 14:839–846. https://doi.org/10.1080/21645515.2017.1412896

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hwang JK, Hong J, Yun C-O (2020) Oncolytic viruses and immune checkpoint inhibitors: preclinical developments to clinical trials. Int J Molecular Sciences 21:8627–8651. https://doi.org/10.3390/ijms21228627

    Article  CAS  Google Scholar 

  3. Ma J, Ramachandran M, Jin C, Quijano-Rubio C, Martikainen M, Yu D, Essand M (2020) Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer. Cell Death Dis 11:48. https://doi.org/10.1038/s41419-020-2236-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li H, Dutuor A, Fu X, Zhang X (2007) Induction of strong antitumor immunity by an HSV-2-based oncolytic virus in a murine mammary tumor model. J Gene Med 9:161–169. https://doi.org/10.1002/jgm.1005

    Article  CAS  PubMed  Google Scholar 

  5. Li H, Dutuor A, Tao L, Fu X, Zhang X (2007) Virotherapy with a type 2 herpes simplex virus-derived oncolytic virus induces potent antitumor immunity against neuroblastoma. Clin Cancer Res 13:316–322

    Article  CAS  PubMed  Google Scholar 

  6. Pearl TM, Markert JM, Cassady KA, Ghonime MG (2019) Oncolytic Virus-based cytokine expression to improve immune activity in brain and solid tumors. Molecular Therapy Oncolytics 13:14–21. https://doi.org/10.1016/j.omto.2019.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pol JG, Workenhe ST, Konda P, Gujar S, Kroemer G (2020) Cytokines in oncolytic virotherapy. Cytokine Growth Factor Rev 56:4–27. https://doi.org/10.1016/2020.10.007

    Article  CAS  PubMed  Google Scholar 

  8. Berkey SE, Thorne SH, Bartlett DL (2017) Oncolytic virotherapy and the tumor microenvironment. Adv Exp Med Biol 1036:157–172. https://doi.org/10.1007/978-3-319-67577-0_11

    Article  CAS  PubMed  Google Scholar 

  9. Thorsson V, Gibbs DL, Brown SD et al (2018) The immune landscape of cancer. Immunity 48(812–30):e14. https://doi.org/10.1016/j.immuni.2018.03.023

    Article  CAS  Google Scholar 

  10. Chon HJ, Lee WS, Yang H et al (2019) Tumor microenvironment remodeling by intratumoral oncolytic vaccinia virus enhances the efficacy of immune-checkpoint blockade. Clin Cancer Res 25:1612–1623. https://doi.org/10.1158/1078-0432.Ccr-18-1932

    Article  CAS  PubMed  Google Scholar 

  11. Linette GP, Carreno BM (2019) Tumor-infiltrating lymphocytes in the checkpoint inhibitor era. Curr Hematol Malig Rep 14:286–291. https://doi.org/10.1007/s11899-019-00523-x

    Article  PubMed  PubMed Central  Google Scholar 

  12. Uryvaev A, Passhak M, Hershkovits D, Sabo E, Bar-Sela G (2018) The role of tumor-infiltrating lymphocytes (TILs) as a predictive biomarker of response to anti-PD1 therapy in patients with metastatic non-small cell lung cancer or metastatic melanoma. Med Oncol 35:25. https://doi.org/10.1007/s12032-018-1080-0

    Article  CAS  PubMed  Google Scholar 

  13. Hendry S, Salgado R, Gevaert T et al (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: Part 2: TILs in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol 24:311–335. https://doi.org/10.1097/PAP.0000000000000161

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fu X, Rivera A, Tao L, Zhang X (2015) An HSV-2 based oncolytic virus can function as an attractant to guide migration of adoptively transferred T cells to tumor sites. Oncotarget 6:902–914

    Article  PubMed  Google Scholar 

  15. Ribas A, Dummer R, Puzanov I et al (2017) Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy. Cell 170(1109–19):e10. https://doi.org/10.1016/j.cell.2017.08.027

    Article  CAS  Google Scholar 

  16. Koske I, Rössler A, Pipperger L et al (2019) Oncolytic virotherapy enhances the efficacy of a cancer vaccine by modulating the tumor microenvironment. Int J Cancer 145:1958–1969. https://doi.org/10.1002/ijc.32325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu X, Tao L, Wu W, Zhang X (2020) Arming HSV-based oncolytic viruses with the ability to redirect the host’s innate antiviral immunity to attack tumor cells. Mol Ther Oncolytics 19:33–46. https://doi.org/10.1016/j.omto.2020.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu X, Tao L, Cai R, Prigge J, Zhang X (2006) A mutant Type 2 Herpes Simplex Virus deleted for the protein kinase domain of the ICP10 gene is a potent oncolytic virus. Mol Ther 13:882–890

    Article  CAS  PubMed  Google Scholar 

  19. Fu X, Tao L, Li M, Fisher WE, Zhang X (2006) Effective treatment of pancreatic cancer xenografts with a conditionally replicating virus derived from type 2 herpes simplex virus. Clin Cancer Res 12:3152–3157

    Article  CAS  PubMed  Google Scholar 

  20. Du Y, Huang Q, Arisdakessian C, Garmire LX (2020) Evaluation of STAR and Kallisto on single cell RNA-Seq data alignment. G3: Genes|Genomes|Genetics. 10: 1775–83. https://doi.org/10.1534/g3.120.401160

  21. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420. https://doi.org/10.1038/nbt.4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pei G, Yan F, Simon LM, Dai Y, Jia P, Zhao Z (2021) deCS: a tool for systematic cell type annotations of single-cell RNA sequencing data among human tissues. bioRxiv. 2021.09.19.460993. https://doi.org/10.1101/2021.09.19.460993

  23. Aran D, Looney AP, Liu L et al (2019) Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20:163–172. https://doi.org/10.1038/s41590-018-0276-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liao M, Liu Y, Yuan J et al (2020) Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 26:842–844. https://doi.org/10.1038/s41591-020-0901-9

    Article  CAS  PubMed  Google Scholar 

  25. Vieth B, Parekh S, Ziegenhain C, Enard W, Hellmann I (2019) A systematic evaluation of single cell RNA-seq analysis pipelines. Nat Commun 10:4667. https://doi.org/10.1038/s41467-019-12266-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stuart T, Butler A, Hoffman P et al (2019) Comprehensive integration of single-cell data. Cell 177(1888–902):e21. https://doi.org/10.1016/j.cell.2019.05.031

    Article  CAS  Google Scholar 

  27. Nakanishi Y, Lu B, Gerard C, Iwasaki A (2009) CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462:510–513. https://doi.org/10.1038/nature08511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bengsch B, Seigel B, Flecken T, Wolanski J, Blum HE, Thimme R (2012) Human Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26). J Immunol 188:5438–5447. https://doi.org/10.4049/jimmunol.1103801

    Article  CAS  PubMed  Google Scholar 

  29. Wakita D, Sumida K, Iwakura Y, Nishikawa H, Ohkuri T, Chamoto K, Kitamura H, Nishimura T (2010) Tumor-infiltrating IL-17-producing γδ T cells support the progression of tumor by promoting angiogenesis. Eur J Immunol 40:1927–1937. https://doi.org/10.1002/eji.200940157

    Article  CAS  PubMed  Google Scholar 

  30. Ma Y, Aymeric L, Locher C et al (2011) Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy. J Exp Med 208:491–503. https://doi.org/10.1084/jem.20100269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petitprez F, de Reyniès A, Keung EZ et al (2020) B cells are associated with survival and immunotherapy response in sarcoma. Nature 577:556–560. https://doi.org/10.1038/s41586-019-1906-8

    Article  CAS  PubMed  Google Scholar 

  32. Helmink BA, Reddy SM, Gao J et al (2020) B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577:549–555. https://doi.org/10.1038/s41586-019-1922-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cabrita R, Lauss M, Sanna A et al (2020) Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577:561–565. https://doi.org/10.1038/s41586-019-1914-8

    Article  CAS  PubMed  Google Scholar 

  34. Hollern DP, Xu N, Thennavan A et al (2019) B Cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer. Cell 179:1191–206.e21. https://doi.org/10.1016/j.cell.2019.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shen Y, Iqbal J, Xiao L et al (2004) Distinct gene expression profiles in different B-cell compartments in human peripheral lymphoid organs. BMC Immunol 5:20. https://doi.org/10.1186/1471-2172-5-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DeNardo DG, Ruffell B (2019) Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 19:369–382. https://doi.org/10.1038/s41577-019-0127-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, Myung P, Plikus MV, Nie Q (2021) Inference and analysis of cell-cell communication using Cell Chat. Nat Commun 12:1088. https://doi.org/10.1038/s41467-021-21246-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Janssen LME, Ramsay EE, Logsdon CD, Overwijk WW (2017) The immune system in cancer metastasis: friend or foe? J Immunother Cancer 5:79. https://doi.org/10.1186/s40425-017-0283-9

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brucher BL, Jamall IS (2014) Cell-cell communication in the tumor microenvironment, carcinogenesis, and anticancer treatment. Cell Physiol Biochem 34:213–243. https://doi.org/10.1159/000362978

    Article  CAS  PubMed  Google Scholar 

  40. Calandra T, Roger T (2003) Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 3:791–800. https://doi.org/10.1038/nri1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Russell L, Swanner J, Jaime-Ramirez AC et al (2018) PTEN expression by an oncolytic herpesvirus directs T-cell mediated tumor clearance. Nat Commun 9:5006. https://doi.org/10.1038/s41467-018-07344-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Samson A, Scott KJ, Taggart D et al. (2018) Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med. 10: eaam7577. https://doi.org/10.1126/scitranslmed.aam7577

  43. Burger JA, Quiroga MP, Hartmann E, Bürkle A, Wierda WG, Keating MJ, Rosenwald A (2009) High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 113:3050–3058. https://doi.org/10.1182/blood-2008-07-170415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsai S-C, Lin S-J, Lin C-J et al (2013) Autocrine CCL3 and CCL4 Induced by the Oncoprotein LMP1 Promote Epstein-Barr Virus-Triggered B Cell proliferation. J Virol 87:9041–9052. https://doi.org/10.1128/jvi.00541-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takahashi K, Sivina M, Hoellenriegel J et al (2015) CCL3 and CCL4 are biomarkers for B cell receptor pathway activation and prognostic serum markers in diffuse large B cell lymphoma. Br J Haematol 171:726–735. https://doi.org/10.1111/bjh.13659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Q, Ren J, Morgan S, Liu Z, Dou C, Liu B (2014) Monocyte chemoattractant protein-1 (MCP-1) regulates macrophage cytotoxicity in abdominal aortic aneurysm. PLoS ONE 9:e92053. https://doi.org/10.1371/journal.pone.0092053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ramelyte E, Tastanova A, Balazs Z et al (2021) Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective. Cancer Cell 39:394-406.e4. https://doi.org/10.1016/j.ccell.2020.12.022

    Article  CAS  PubMed  Google Scholar 

  48. Petitprez F, Meylan M, de Reyniès A, Sautès-Fridman C, Fridman WH (2020) The Tumor microenvironment in the response to immune checkpoint blockade therapies. Front Immunol 11:784. https://doi.org/10.3389/fimmu.2020.00784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oh JE, Iijima N, Song E, Lu P, Klein J, Jiang R, Kleinstein SH, Iwasaki A (2019) Migrant memory B cells secrete luminal antibody in the vagina. Nature 571:122–126. https://doi.org/10.1038/s41586-019-1285-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ford ES, Sholukh AM, Boytz R et al (2021) B cells, antibody-secreting cells, and virus-specific antibodies respond to herpes simplex virus 2 reactivation in skin. J Clin Invest 131:e142088. https://doi.org/10.1172/JCI142088

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cancer Prevention and Research Institute of Texas (CPRIT) grant RP200464 and a grant from the William and Ella Owens Medical Research Foundation (to X.Z.), the National Institutes of Health grant R01LM012806 (to Z.Z), and the CPRIT grant RP180734 (to Z.Z.). We thank the University of Houston sequencing core for library construction and sequencing, and Dr. Brandon Mistretta for his assistance with pre-processing and upstream analysis of the scRNA-seq data. We thank Dr. Xinli Liu for assistance with the cell sorting, and Dr. Wanfu Wu for assistance with IHC staining. We also thank Drs. Weiyi Peng and Navin Varadarajan for advice, and Dr. Tho Tran for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D.R and X.Z. conceived the project and designed the experiments. D.R. executed all the experiments in the study. G.P. and D.R. performed bioinformatics analysis. D.R. and X.Z. wrote the manuscript draft and G.P. and Z.Z. helped the finalization of the manuscript.

Corresponding author

Correspondence to Xiaoliu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3951 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravirala, D., Pei, G., Zhao, Z. et al. Comprehensive characterization of tumor immune landscape following oncolytic virotherapy by single-cell RNA sequencing. Cancer Immunol Immunother 71, 1479–1495 (2022). https://doi.org/10.1007/s00262-021-03084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03084-2

Keywords

Navigation