Skip to main content

Advertisement

Log in

Intravesical Pseudomonas aeruginosa mannose-sensitive Hemagglutinin vaccine triggers a tumor-preventing immune environment in an orthotopic mouse bladder cancer model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Bacillus Calmette-Guerin (BCG) immunotherapy can prevent recurrence and progression in selected patients with non-muscle-invasive bladder cancer (NMIBC); however, significant adverse events and treatment failure suggest the need for alternative agents. A commercial anti-infection vaccine comprises a genetically engineered heat-killed Pseudomonas aeruginosa (PA) expressing many mannose-sensitive hemagglutination (MSHA) fimbriae, termed PA-MSHA, which could be a candidate for bladder cancer intravesical therapy. In an immunocompetent orthotopic MB49 bladder cancer model, we characterized the antitumor effects and mechanisms of PA-MSHA compared with those of BCG. Three weekly intravesical PA-MSHA or BCG treatments reduced tumor involvement; however, only PA-MSHA prolonged survival against MB49 implantation significantly. In non-tumor-bearing mice after treatment, flow-cytometry analysis showed PA-MSHA and BCG induced an increased CD4/CD8 ratio, the levels of effector memory T cell phenotypes (CD44, CXCR-3, and IFN-γ), and the proportion of CD11b+Ly6GLy6CIA/IE+ mature macrophages, but a decrease in the proportion of CD11b+Ly6GLy6C+IA/IE monocytic myeloid-derived suppressor cells (Mo-MDSCs) and the expression of suppressive molecules on immune cells (PD-L1, PD-1, TIM-3, and LAG-3). Notably, PA-MSHA, but not BCG, significantly reduced PD-1 and TIM-3 expression on CD4+ T cells, which might account for the better effects of PA-MSHA than BCG. However, in tumor-bearing mice after treatment, the increased proportion of Mo-MDSCs and high expression of PD-L1 might be involved in treatment failure. Thus, modulating the balance among adaptive and innate immune responses was identified as a key process underlying PA-MSHA-mediated treatment efficacy. The results demonstrated mechanisms underlying intravesical PA-MSHA therapy, pointing at its potential as an alternative effective treatment for NMIBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Data are available upon reasonable request.

References

  1. Alexandroff AB, Jackson AM, O’Donnell MA, James K (1999) BCG immunotherapy of bladder cancer: 20 years on. Lancet 353:1689–1694. https://doi.org/10.1016/S0140-6736(98)07422-4

    Article  CAS  PubMed  Google Scholar 

  2. Pettenati C, Ingersoll MA (2018) Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat Rev Urol 15:615–625. https://doi.org/10.1038/s41585-018-0055-4

    Article  CAS  PubMed  Google Scholar 

  3. Babjuk M, Burger M, Comperat EM et al (2019) European association of urology guidelines on non-muscle-invasive bladder cancer (TaT1 and Carcinoma In situ) - 2019 update. Eur Urol. https://doi.org/10.1016/j.eururo.2019.08.016

    Article  PubMed  Google Scholar 

  4. Kobayashi M, Fujiyama N, Tanegashima T et al (2021) Effect of HLA genotype on intravesical recurrence after bacillus Calmette-Guerin therapy for non-muscle-invasive bladder cancer. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-021-03032-0

    Article  PubMed  Google Scholar 

  5. Kamat AM, Colombel M, Sundi D et al (2017) BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG. Nat Rev Urol 14:244–255. https://doi.org/10.1038/nrurol.2017.16

    Article  PubMed  Google Scholar 

  6. Kates M, Matoso A, Choi W et al (2020) Adaptive immune resistance to intravesical BCG in non-muscle invasive bladder cancer: implications for prospective BCG-unresponsive trials. Clin Cancer Res 26:882–891. https://doi.org/10.1158/1078-0432.CCR-19-1920

    Article  CAS  PubMed  Google Scholar 

  7. Lim CJ, Nguyen PHD, Wasser M et al (2020) Immunological hallmarks for clinical response to BCG in bladder cancer. Front Immunol 11:615091. https://doi.org/10.3389/fimmu.2020.615091

    Article  CAS  PubMed  Google Scholar 

  8. Li R, Tabayoyong WB, Guo CC, Gonzalez GMN, Navai N, Grossman HB, Dinney CP, Kamat AM (2019) Prognostic implication of the United States food and drug administration-defined BCG-unresponsive disease. Eur Urol 75:8–10. https://doi.org/10.1016/j.eururo.2018.09.028

    Article  PubMed  Google Scholar 

  9. Saha D, Martuza RL, Rabkin SD (2017) Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 32(253–267):e255. https://doi.org/10.1016/j.ccell.2017.07.006

    Article  CAS  Google Scholar 

  10. Noguera-Ortega E, Secanella-Fandos S, Erana H, Gasion J, Rabanal RM, Luquin M, Torrents E, Julian E (2016) Nonpathogenic mycobacterium brumae inhibits bladder cancer growth In vitro, Ex vivo, and In vivo. Eur Urol Focus 2:67–76. https://doi.org/10.1016/j.euf.2015.03.003

    Article  PubMed  Google Scholar 

  11. Liu ZB, Hou YF, Min D, Di GH, Wu J, Shen ZZ, Shao ZM (2009) PA-MSHA inhibits proliferation and induces apoptosis through the up-regulation and activation of caspases in the human breast cancer cell lines. J Cell Biochem 108:195–206. https://doi.org/10.1002/jcb.22241

    Article  CAS  PubMed  Google Scholar 

  12. Liu ZB, Hou YF, Zhu J et al (2010) Inhibition of EGFR pathway signaling and the metastatic potential of breast cancer cells by PA-MSHA mediated by type 1 fimbriae via a mannose-dependent manner. Oncogene 29:2996–3009. https://doi.org/10.1038/onc.2010.70

    Article  CAS  PubMed  Google Scholar 

  13. Zhang M, Luo F, Zhang Y, Wang L, Lin W, Yang M, Hu D, Wu X, Chu Y (2014) Pseudomonas aeruginosa mannose-sensitive hemagglutinin promotes T-cell response via toll-like receptor 4-mediated dendritic cells to slow tumor progression in mice. J Pharmacol Exp Ther 349:279–287. https://doi.org/10.1124/jpet.113.212316

    Article  CAS  PubMed  Google Scholar 

  14. Li T, Dong ZR, Guo ZY et al (2015) Mannose-mediated inhibitory effects of PA-MSHA on invasion and metastasis of hepatocellular carcinoma via EGFR/Akt/IkappaBbeta/NF-kappaB pathway. Liver Int 35:1416–1429. https://doi.org/10.1111/liv.12644

    Article  CAS  PubMed  Google Scholar 

  15. Zhong W, Wang B, Yu H et al (2020) Serum CCL27 predicts the response to Bacillus Calmette-Guerin immunotherapy in non-muscle-invasive bladder cancer. Oncoimmunology 9:1776060. https://doi.org/10.1080/2162402X.2020.1776060

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vandeveer AJ, Fallon JK, Tighe R, Sabzevari H, Schlom J, Greiner JW (2016) Systemic Immunotherapy of non-muscle invasive mouse bladder cancer with avelumab, an Anti-PD-L1 immune checkpoint inhibitor. Cancer Immunol Res 4:452–462. https://doi.org/10.1158/2326-6066.CIR-15-0176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biot C, Rentsch CA, Gsponer JR et al (2012) Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci Transl Med 4:137–172. https://doi.org/10.1126/scitranslmed.3003586

    Article  CAS  Google Scholar 

  18. Redelman-Sidi G, Glickman MS, Bochner BH (2014) The mechanism of action of BCG therapy for bladder cancer–a current perspective. Nat Rev Urol 11:153–162. https://doi.org/10.1038/nrurol.2014.15

    Article  CAS  PubMed  Google Scholar 

  19. Luo Y, Knudson MJ (2010) Mycobacterium bovis bacillus Calmette-Guerin-induced macrophage cytotoxicity against bladder cancer cells. Clin Dev Immunol 2010:357591. https://doi.org/10.1155/2010/357591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lima L, Oliveira D, Tavares A, Amaro T, Cruz R, Oliveira MJ, Ferreira JA, Santos L (2014) The predominance of M2-polarized macrophages in the stroma of low-hypoxic bladder tumors is associated with BCG immunotherapy failure. Urol Oncol 32:449–457. https://doi.org/10.1016/j.urolonc.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  21. Ayari C, LaRue H, Hovington H, Decobert M, Harel F, Bergeron A, Tetu B, Lacombe L, Fradet Y (2009) Bladder tumor infiltrating mature dendritic cells and macrophages as predictors of response to bacillus Calmette-Guerin immunotherapy. Eur Urol 55:1386–1395. https://doi.org/10.1016/j.eururo.2009.01.040

    Article  CAS  PubMed  Google Scholar 

  22. Laoui D, Van Overmeire E, Di Conza G et al (2014) Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res 74:24–30. https://doi.org/10.1158/0008-5472.CAN-13-1196

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Lee Y, Li Y et al (2018) Co-inhibitory molecule B7 superfamily member 1 expressed by tumor-infiltrating myeloid cells induces dysfunction of anti-tumor CD8(+) T cells. Immunity 48(773–786):e775. https://doi.org/10.1016/j.immuni.2018.03.018

    Article  CAS  Google Scholar 

  24. Zaharoff DA, Hoffman BS, Hooper HB et al (2009) Intravesical immunotherapy of superficial bladder cancer with chitosan/interleukin-12. Cancer Res 69:6192–6199. https://doi.org/10.1158/0008-5472.CAN-09-1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Antonelli AC, Binyamin A, Hohl TM, Glickman MS, Redelman-Sidi G (2020) Bacterial immunotherapy for cancer induces CD4-dependent tumor-specific immunity through tumor-intrinsic interferon-gamma signaling. Proc Natl Acad Sci U S A 117:18627–18637. https://doi.org/10.1073/pnas.2004421117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Domingos-Pereira S, Sathiyanadan K, La Rosa S et al (2019) Intravesical Ty21a vaccine promotes dendritic cells and T cell-mediated tumor regression in the MB49 bladder cancer model. Cancer Immunol Res 7:621–629. https://doi.org/10.1158/2326-6066.CIR-18-0671

    Article  CAS  PubMed  Google Scholar 

  27. Lobo N, Brooks NA, Zlotta AR et al (2021) 100 years of bacillus calmette-guerin immunotherapy: from cattle to COVID-19. Nat Rev Urol. https://doi.org/10.1038/s41585-021-00481-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cachot A, Bilous M, Liu YC et al (2021) Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci Adv. https://doi.org/10.1126/sciadv.abe3348

    Article  PubMed  PubMed Central  Google Scholar 

  29. Oh DY, Kwek SS, Raju SS et al (2020) Intratumoral CD4(+) T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 181(1612–1625):e1613. https://doi.org/10.1016/j.cell.2020.05.017

    Article  CAS  Google Scholar 

  30. Kates M, Nirschl T, Sopko NA et al (2017) Intravesical BCG induces CD4(+) T-cell expansion in an immune competent model of bladder cancer. Cancer Immunol Res 5:594–603. https://doi.org/10.1158/2326-6066.CIR-16-0267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guilliams M, Mildner A, Yona S (2018) Developmental and functional heterogeneity of monocytes. Immunity 49:595–613. https://doi.org/10.1016/j.immuni.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  32. DeNardo DG, Ruffell B (2019) Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 19:369–382. https://doi.org/10.1038/s41577-019-0127-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Veglia F, Gabrilovich DI (2017) Dendritic cells in cancer: the role revisited. Curr Opin Immunol 45:43–51. https://doi.org/10.1016/j.coi.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13:739–752. https://doi.org/10.1038/nrc3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220. https://doi.org/10.1016/j.it.2016.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zuiverloon TC, Nieuweboer AJ, Vekony H, Kirkels WJ, Bangma CH, Zwarthoff EC (2012) Markers predicting response to bacillus Calmette-Guerin immunotherapy in high-risk bladder cancer patients: a systematic review. Eur Urol 61:128–145. https://doi.org/10.1016/j.eururo.2011.09.026

    Article  PubMed  Google Scholar 

  37. Kamat AM, Briggman J, Urbauer DL, Svatek R, Nogueras Gonzalez GM, Anderson R, Grossman HB, Prat F, Dinney CP (2016) Cytokine Panel for response to intravesical therapy (CyPRIT): Nomogram of changes in urinary cytokine levels predicts patient response to bacillus calmette-guerin. Eur Urol 69:197–200. https://doi.org/10.1016/j.eururo.2015.06.023

    Article  CAS  PubMed  Google Scholar 

  38. Lee SH, Hu W, Matulay JT et al (2018) Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173(515–528):e517. https://doi.org/10.1016/j.cell.2018.03.017

    Article  CAS  Google Scholar 

  39. Inman BA, Sebo TJ, Frigola X, Dong H, Bergstralh EJ, Frank I, Fradet Y, Lacombe L, Kwon ED (2007) PD-L1 (B7–H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer 109:1499–1505. https://doi.org/10.1002/cncr.22588

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, Lin T, Xu K et al (2008) Laparoscopic radical cystectomy with orthotopic ileal neobladder: a report of 85 cases. J Endourol 22:939–946. https://doi.org/10.1089/end.2007.0298

    Article  PubMed  Google Scholar 

  41. Kobayashi T, Owczarek TB, McKiernan JM, Abate-Shen C (2015) Modelling bladder cancer in mice: opportunities and challenges. Nat Rev Cancer 15:42–54. https://doi.org/10.1038/nrc3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Wanter Biopharma Company (Beijing, China) and Chengdu Institute of Biological Products Co., Ltd (Chengdu, China) for providing PA-MSHA and BCG, respectively.

This study was supported by the National Natural Science Foundation of China (Grant No. 2018YFA0902803 and 81,825,016); the Science and Technology Program of Guangzhou (Grant No. 201604020156); the Pearl River S&T Nova Program of Guangzhou (201,806,010,024); Fundamental Research Funds for Young Teachers in the Higher Education Institutions of China (Grant No. 19ykpy116); the Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University (Grant No. KLB09001); the Key Laboratory of Malignant Tumor Molecular Mechanism and Translational Medicine of Guangzhou Bureau of Science and Information Technology (Grant No. 013–163); the Key Science Research Projects of Gannan Medical University in 2018 (Grant No. ZD201835); and Science and Technology Plan Project of Jiangxi Provincial Health Committee (Grant No. 20204519).

Author information

Authors and Affiliations

Authors

Contributions

Wang B and He Z designed the experiment, analyzed the data, and wrote the manuscript; Yu H and Fan X established the mice models and performed the treatments; Yang M and Ou Z collected the samples and do the flow cytometric analysis; Chen J did the histology stains; Lin T modified and revised the manuscript; Huang J supervised in the design of the study and finalized the manuscript. All authors have read and approved the manuscript and agree with their inclusion as a co-author.

Corresponding authors

Correspondence to Tianxin Lin or Jian Huang.

Ethics declarations

Conflicts of interest

The authors declare no potential conflicts of interest.

Ethics approval and consent to participate

Ethical approval was provided by the Committees for Ethical Review of Research at Sun Yat-sen University and was performed according to the institutional ethical guidelines for animal experiments.

Consent for publication

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., He, Z., Yu, H. et al. Intravesical Pseudomonas aeruginosa mannose-sensitive Hemagglutinin vaccine triggers a tumor-preventing immune environment in an orthotopic mouse bladder cancer model. Cancer Immunol Immunother 71, 1507–1517 (2022). https://doi.org/10.1007/s00262-021-03063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03063-7

Keywords

Navigation