Skip to main content

Advertisement

Log in

LncRNA MIR155HG induces M2 macrophage polarization and drug resistance of colorectal cancer cells by regulating ANXA2

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Objective

To investigate the effects of lncRNA MIR155HG and Annexin A2 (ANXA2) on colorectal cancer (CRC) and the mechanism of the MIR155HG/ANXA2 axis.

Methods

The expressions of MIR155HG and ANXA2 in human CRC tissues were analyzed for association with pathological characteristics and prognosis of CRC patients. CRC cell lines (Caco2 and HT29) were used to study the effects of MIR155HG or ANXA2 knockdown on tumor cell behaviors and macrophage polarization as well as the effect of M2 polarization on oxaliplatin resistance of CRC cells. RNA immunoprecipitation, RNA pull-down and dual-luciferase reporter assays were applied to verify the targeting relationships among MIR155HG, miR-650 and ANXA2. Heterotopic xenograft models were established to verify the results of cell experiments.

Results

MIR155HG and ANXA2 were highly expressed in CRC tissues/cells and of prognostic values for CRC patients. Knockdown of MIR155HG or ANXA2 suppressed M2 macrophage polarization, and proliferation, migration, invasion and oxaliplatin resistance of CRC cells. MIR155HG competed with ANXA2 for binding miR-650 and can also directly target ANXA2. Knockdown of MIR155HG or ANXA2 also inhibited M2 macrophage polarization and CRC progression in nude mice.

Conclusion

This study highlighted that MIR155HG, by regulating the miR-650/ANXA2 axis, promotes CRC progression and enhances oxaliplatin resistance in CRC cells through M2 macrophage polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin 70:145–164. https://doi.org/10.3322/caac.21601

    Article  PubMed  Google Scholar 

  2. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F (2017) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66:683–691. https://doi.org/10.1136/gutjnl-2015-310912

    Article  PubMed  Google Scholar 

  3. Marmol I, Sanchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci. https://doi.org/10.3390/ijms18010197

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yamagishi H, Kuroda H, Imai Y, Hiraishi H (2016) Molecular pathogenesis of sporadic colorectal cancers. Chin J Cancer 35:4. https://doi.org/10.1186/s40880-015-0066-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen J, Pitmon E, Wang K (2017) Microbiome, inflammation and colorectal cancer. Semin Immunol 32:43–53. https://doi.org/10.1016/j.smim.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  6. Lasry A, Zinger A, Ben-Neriah Y (2016) Inflammatory networks underlying colorectal cancer. Nat Immunol 17:230–240. https://doi.org/10.1038/ni.3384

    Article  CAS  PubMed  Google Scholar 

  7. Shapouri-Moghaddam A, Mohammadian S, Vazini H et al (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233:6425–6440. https://doi.org/10.1002/jcp.26429

    Article  CAS  PubMed  Google Scholar 

  8. Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566. https://doi.org/10.1146/annurev-physiol-022516-034339

    Article  CAS  PubMed  Google Scholar 

  9. Sica A, Larghi P, Mancino A et al (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18:349–355. https://doi.org/10.1016/j.semcancer.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  10. Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:948098. https://doi.org/10.1155/2012/948098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li R, Zhou R, Wang H et al (2019) Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ 26:2447–2463. https://doi.org/10.1038/s41418-019-0312-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shinohara H, Kuranaga Y, Kumazaki M, Sugito N, Yoshikawa Y, Takai T, Taniguchi K, Ito Y, Akao Y (2017) Regulated polarization of tumor-associated macrophages by miR-145 via colorectal cancer-derived extracellular vesicles. J Immunol 199:1505–1515. https://doi.org/10.4049/jimmunol.1700167

    Article  CAS  PubMed  Google Scholar 

  13. Yang C, He L, He P, Liu Y, Wang W, He Y, Du Y, Gao F (2015) Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol 32:352. https://doi.org/10.1007/s12032-014-0352-6

    Article  CAS  PubMed  Google Scholar 

  14. Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie G, Ma Y, Shen L (2017) Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res 36:53. https://doi.org/10.1186/s13046-017-0528-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beermann J, Piccoli MT, Viereck J, Thum T (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96:1297–1325. https://doi.org/10.1152/physrev.00041.2015

    Article  CAS  PubMed  Google Scholar 

  16. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641. https://doi.org/10.1016/j.cell.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, Shen F (2019) Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci. https://doi.org/10.3390/ijms20225573

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang X, Zhang S, He C et al (2020) METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer 19:46. https://doi.org/10.1186/s12943-020-1146-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Silva-Fisher JM, Dang HX, White NM et al (2020) Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat Commun 11:2156. https://doi.org/10.1038/s41467-020-15547-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Huang W, Yuan Y, Li J, Wu J, Yu J, He Y, Wei Z, Zhang C (2020) Long non-coding RNA H19 promotes colorectal cancer metastasis via binding to hnRNPA2B1. J Exp Clin Cancer Res 39:141. https://doi.org/10.1186/s13046-020-01619-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qin Y, Liu X, Pan L, Zhou R, Zhang X (2019) Long noncoding RNA MIR155HG facilitates pancreatic cancer progression through negative regulation of miR-802. J Cell Biochem 120:17926–17934. https://doi.org/10.1002/jcb.29060

    Article  CAS  PubMed  Google Scholar 

  22. Li N, Liu Y, Cai J (2019) LncRNA MIR155HG regulates M1/M2 macrophage polarization in chronic obstructive pulmonary disease. Biomed Pharmacother 117:109015. https://doi.org/10.1016/j.biopha.2019.109015

    Article  CAS  PubMed  Google Scholar 

  23. Thiele JA, Hosek P, Kralovcova E et al (2018) lncRNAs in non-malignant tissue have prognostic value in colorectal cancer. Int J Mol Sci. https://doi.org/10.3390/ijms19092672

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu H, He G, Han H et al (2019) Analysis of MIR155HG variants and colorectal cancer susceptibility in Han Chinese population. Mol Genet Genomic Med 7:e778. https://doi.org/10.1002/mgg3.778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan JJ, Tay Y (2018) Noncoding RNA: RNA regulatory networks in cancer. Int J Mol Sci. https://doi.org/10.3390/ijms19051310

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu W, Yu T, Wu Y, Tian W, Zhang J, Wang Y (2019) The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression. J Exp Clin Cancer Res 38:133. https://doi.org/10.1186/s13046-019-1132-0

    Article  PubMed  PubMed Central  Google Scholar 

  27. Christensen MV, Hogdall CK, Jochumsen KM, Hogdall EVS (2018) Annexin A2 and cancer: a systematic review. Int J Oncol 52:5–18. https://doi.org/10.3892/ijo.2017.4197

    Article  CAS  PubMed  Google Scholar 

  28. Rocha MR, Barcellos-de-Souza P, Sousa-Squiavinato ACM, Fernandes PV, de Oliveira IM, Boroni M, Morgado-Diaz JA (2018) Annexin A2 overexpression associates with colorectal cancer invasiveness and TGF-ss induced epithelial mesenchymal transition via Src/ANXA2/STAT3. Sci Rep 8:11285. https://doi.org/10.1038/s41598-018-29703-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB (2019) Colorectal cancer. Lancet 394:1467–1480. https://doi.org/10.1016/S0140-6736(19)32319-0

    Article  PubMed  Google Scholar 

  30. Baytak E, Gong Q, Akman B, Yuan H, Chan WC, Kucuk C (2017) Whole transcriptome analysis reveals dysregulated oncogenic lncRNAs in natural killer/T-cell lymphoma and establishes MIR155HG as a target of PRDM1. Tumour Biol 39:1010428317701648. https://doi.org/10.1177/1010428317701648

    Article  CAS  PubMed  Google Scholar 

  31. Balasubramaniyan V, Bhat KP (2017) Targeting MIR155HG in glioma: a novel approach. Neuro Oncol 19:1152–1153. https://doi.org/10.1093/neuonc/nox095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song J, Peng J, Zhu C, Bai G, Liu Y, Zhu J, Liu J (2018) Identification and validation of two novel prognostic lncRNAs in kidney renal clear cell carcinoma. Cell Physiol Biochem 48:2549–2562. https://doi.org/10.1159/000492699

    Article  CAS  PubMed  Google Scholar 

  33. Wu X, Wang Y, Yu T et al (2017) Blocking MIR155HG/miR-155 axis inhibits mesenchymal transition in glioma. Neuro Oncol 19:1195–1205. https://doi.org/10.1093/neuonc/nox017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao C, Zheng S, Yan Z, Deng Z, Wang R, Zhang B (2020) CCL18 promotes the invasion and metastasis of breast cancer through Annexin A2. Oncol Rep 43:571–580. https://doi.org/10.3892/or.2019.7426

    Article  CAS  PubMed  Google Scholar 

  35. Yang N, Wang L, Liu J, Liu L, Huang J, Chen X, Luo Z (2018) MicroRNA-206 regulates the epithelial-mesenchymal transition and inhibits the invasion and metastasis of prostate cancer cells by targeting Annexin A2. Oncol Lett 15:8295–8302. https://doi.org/10.3892/ol.2018.8395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu XB, Wang J, Li K, Fan XN (2019) Sp1 promotes cell migration and invasion in oral squamous cell carcinoma by upregulating Annexin A2 transcription. Mol Cell Probes 46:101417. https://doi.org/10.1016/j.mcp.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  37. He H, Xiao L, Cheng S et al (2019) Annexin A2 enhances the progression of colorectal cancer and hepatocarcinoma via cytoskeleton structural rearrangements. Microsc Microanal 25:950–960. https://doi.org/10.1017/S1431927619000679

    Article  CAS  PubMed  Google Scholar 

  38. Xiu D, Liu L, Qiao F, Yang H, Cui L, Liu G (2016) Annexin A2 coordinates STAT3 to regulate the invasion and migration of colorectal cancer cells in vitro. Gastroenterol Res Pract 2016:3521453. https://doi.org/10.1155/2016/3521453

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lin L, Hu K (2017) Tissue-type plasminogen activator modulates macrophage M2 to M1 phenotypic change through annexin A2-mediated NF-kappaB pathway. Oncotarget 8:88094–88103. https://doi.org/10.18632/oncotarget.21510

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen Y, Zhang S, Wang Q, Zhang X (2017) Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol 10:36. https://doi.org/10.1186/s13045-017-0408-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lan J, Sun L, Xu F et al (2019) M2 macrophage-derived exosomes promote cell migration and invasion in colon cancer. Cancer Res 79:146–158. https://doi.org/10.1158/0008-5472.CAN-18-0014

    Article  CAS  PubMed  Google Scholar 

  42. Dong N, Shi X, Wang S et al (2019) M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br J Cancer 121:22–33. https://doi.org/10.1038/s41416-019-0482-x

    Article  PubMed  PubMed Central  Google Scholar 

  43. He X, Sheng J, Yu W, Wang K, Zhu S, Liu Q (2020) LncRNA MIR155HG promotes temozolomide resistance by activating the Wnt/beta-catenin pathway via binding to PTBP1 in glioma. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-020-00898-z

    Article  PubMed  Google Scholar 

  44. Feng X, Liu H, Zhang Z, Gu Y, Qiu H, He Z (2017) Annexin A2 contributes to cisplatin resistance by activation of JNK-p53 pathway in non-small cell lung cancer cells. J Exp Clin Cancer Res 36:123. https://doi.org/10.1186/s13046-017-0594-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu H, Zhao J, Zhang M (2016) Expression of Annexin A2 and its correlation with drug resistance and recurrence of bladder cancer. Technol Cancer Res Treat 15:NP61–NP68. https://doi.org/10.1177/1533034615617078

    Article  CAS  PubMed  Google Scholar 

  46. Zhou C, Cui F, Li J, Wang D, Wei Y, Wu Y, Wang J, Zhu H, Wang S (2017) MiR-650 represses high-risk non-metastatic colorectal cancer progression via inhibition of AKT2/GSK3beta/E-cadherin pathway. Oncotarget 8:49534–49547. https://doi.org/10.18632/oncotarget.17743

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xu L, Yu QW, Fang SQ, Zheng YK, Qi JC (2018) MiR-650 inhibits the progression of glioma by targeting FAM83F. Eur Rev Med Pharmacol Sci 22:8391–8398. https://doi.org/10.26355/eurrev_201812_16537

    Article  CAS  PubMed  Google Scholar 

  48. Yuan C, Xu L, Du P, Pang J (2018) miRNA-650 exerts anti-leukemia activity by inhibiting cell proliferation through Gfi1 targeting. Tumori 104:369–374. https://doi.org/10.5301/tj.5000643

    Article  CAS  PubMed  Google Scholar 

  49. Qin A, Wu J, Zhai M, Lu Y, Huang B, Lu X, Jiang X, Qiao Z (2020) Axin1 inhibits proliferation, invasion, migration and EMT of hepatocellular carcinoma by targeting miR-650. Am J Transl Res 12:1114–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang X, Ding Y, Wang X, Wang X, Zhao L, Bi H (2019) miR-650 promotes non-small cell lung cancer cell proliferation and invasion by targeting ING4 through Wnt-1/beta-catenin pathway. Oncol Lett 18:4621–4628. https://doi.org/10.3892/ol.2019.10805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao Y, Zhu Z, Shi S, Wang J, Li N (2019) Long non-coding RNA MEG3 regulates migration and invasion of lung cancer stem cells via miR-650/SLC34A2 axis. Biomed Pharmacother 120:109457. https://doi.org/10.1016/j.biopha.2019.109457

    Article  CAS  PubMed  Google Scholar 

  52. You Q, Li H, Liu Y et al (2018) MicroRNA-650 targets inhibitor of growth 4 to promote colorectal cancer progression via mitogen activated protein kinase signaling. Oncol Lett 16:2326–2334. https://doi.org/10.3892/ol.2018.8910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 86855 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Li, J., Liao, M. et al. LncRNA MIR155HG induces M2 macrophage polarization and drug resistance of colorectal cancer cells by regulating ANXA2. Cancer Immunol Immunother 71, 1075–1091 (2022). https://doi.org/10.1007/s00262-021-03055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03055-7

Keywords

Navigation