Skip to main content

Advertisement

Log in

Multiplexed single-cell pathology reveals the association of CD8 T-cell heterogeneity with prognostic outcomes in renal cell carcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Despite the high sensitivity of renal cell carcinoma (RCC) to immunotherapy, RCC has been recognized as an unusual disease in which CD8+ T-cell infiltration into the tumor beds is related to a poor prognosis. To approach the inner landscape of immunobiology of RCC, we performed multiplexed seven-color immunohistochemistry (CD8, CD39, PD-1, Foxp3, PD-L1, and pan-cytokeratin AE1/AE3 with DAPI), which revealed the automated single-cell counts and calculations of individual cell-to-cell distances. In total, 186 subjects were included, in which CD39 was used as a marker for distinguishing tumor-specific (CD39+) and bystander (CD39) T-cells. Our clear cell RCC cohort also revealed a poor prognosis if the tumor showed increased CD8+ T-cell infiltration. Intratumoral CD8+CD39+ T-cells as well as their exhausted CD8+CD39+PD-1+ T-cells in the central tumor areas enabled the subgrouping of patients according to malignancy. Analysis using specimens post-antiangiogenic treatment revealed a dramatic increase in proliferative Treg fraction Foxp3+PD-1+ cells, suggesting a potential mechanism of hyperprogressive disease after uses of anti-PD-1 antibody. Our cell-by-cell study platform provided spatial information on tumors, where bystander CD8+CD39 T-cells were dominant in the invasive margin areas. We uncovered a potential interaction between CD8+CD39+PD-1+ T-cells and Foxp3+PD-1+ Treg cells due to cell-to-cell proximity, forming a spatial niche more specialized in immunosuppression under PD-1 blockade. A paradigm shift to the immunosuppressive environment was more obvious in metastatic lesions; rather the infiltration of Foxp3+ and Foxp3+PD-1+ Treg cells was more pronounced. With this multiplexed single-cell pathology technique, we revealed further insight into the immunobiological standing of RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim JM, Chen DS (2016) Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol 27(8):1492–1504

    Article  CAS  Google Scholar 

  2. Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    Article  Google Scholar 

  3. Snyder A, Makarov V, Merghoub T et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  Google Scholar 

  4. Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389(10066):255–265

    Article  Google Scholar 

  5. Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813

    Article  CAS  Google Scholar 

  6. Motzer RJ, Tannir NM, McDermott DF et al (2018) Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 378(14):1277–1290

    Article  CAS  Google Scholar 

  7. Escudier B, Porta C, Schmidinger M et al (2019) Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-updagger. Ann Oncol 30(5):706–720

    Article  CAS  Google Scholar 

  8. Ljungberg B, Albiges L, Abu-Ghanem Y et al (2019) European association of urology guidelines on renal cell carcinoma: the 2019 update. Eur Urol 75(5):799–810

    Article  Google Scholar 

  9. Motzer RJ, Jonasch E, Michaelson MD et al (2019) NCCN guidelines insights: kidney cancer version 2. J Natl Compr Canc Netw 17(11):1278–1285

    Article  CAS  Google Scholar 

  10. Drake CG, Stein MN (2018) The immunobiology of kidney cancer. J Clin Oncol 36:3547–3552

    Article  CAS  Google Scholar 

  11. Galon J, Bruni D (2020) Tumor immunology and tumor evolution: intertwined histories. Immunity 52(1):55–81

    Article  CAS  Google Scholar 

  12. Fridman WH, Zitvogel L, Sautes-Fridman C et al (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14(12):717–734

    Article  CAS  Google Scholar 

  13. Remark R, Alifano M, Cremer I et al (2013) Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin Cancer Res 19(15):4079–4091

    Article  CAS  Google Scholar 

  14. Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401

    Article  CAS  Google Scholar 

  15. Zeisel A, Munoz-Manchado AB, Codeluppi S et al (2015) Brain structure. cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347(6226):1138–1142

    Article  CAS  Google Scholar 

  16. Yu Y, Tsang JC, Wang C et al (2016) Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway. Nature 539(7627):102–106

    Article  CAS  Google Scholar 

  17. Dulken BW, Buckley MT, Navarro Negredo P et al (2019) Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571(7764):205–210

    Article  CAS  Google Scholar 

  18. Gate D, Saligrama N, Leventhal O et al (2020) Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577(7790):399–404

    Article  CAS  Google Scholar 

  19. Simoni Y, Becht E, Fehlings M et al (2018) Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557(7706):575–579

    Article  CAS  Google Scholar 

  20. Tanaka N, Kanatani S, Tomer R et al (2017) Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat Biomed Eng 1(10):796–806

    Article  CAS  Google Scholar 

  21. Tanaka N, Kanatani S, Kaczynska D et al (2020) Three-dimensional single-cell imaging for the analysis of RNA and protein expression in intact tumour biopsies. Nat Biomed Eng 4:875–888

    Article  CAS  Google Scholar 

  22. Stack EC, Wang C, Roman KA et al (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70(1):46–58

    Article  CAS  Google Scholar 

  23. Huang YK, Wang M, Sun Y et al (2019) Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry. Nat Commun 10(1):3928

    Article  Google Scholar 

  24. Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36(4):265–276

    Article  CAS  Google Scholar 

  25. Pauken KE, Wherry EJ (2015) SnapShot: T cell exhaustion. Cell 163(4):1038–1038

    Article  CAS  Google Scholar 

  26. Day CL, Kaufmann DE, Kiepiela P et al (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443(7109):350–354

    Article  CAS  Google Scholar 

  27. Kamada T, Togashi Y, Tay C et al (2019) PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A 116(20):9999–10008

    Article  CAS  Google Scholar 

  28. Kumagai S, Togashi Y, Kamada T et al (2020) The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol 21(11):1346–1358

    Article  CAS  Google Scholar 

  29. Rini BI, Plimack ER, Stus V et al (2019) Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 380(12):1116–1127

    Article  CAS  Google Scholar 

  30. Motzer RJ, Penkov K, Haanen J et al (2019) Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 380(12):1103–1115

    Article  CAS  Google Scholar 

  31. Savas P, Virassamy B, Ye C et al (2018) Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 24(7):986–993

    Article  CAS  Google Scholar 

  32. Guo X, Zhang Y, Zheng L et al (2018) Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med 24(7):978–985

    Article  CAS  Google Scholar 

  33. Qi Y, Xia Y, Lin Z et al (2020) Tumor-infiltrating CD39(+)CD8(+) T cells determine poor prognosis and immune evasion in clear cell renal cell carcinoma patients. Cancer Immunol Immunother 69(8):1565–1576

    Article  CAS  Google Scholar 

  34. Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18(3):197–218

    Article  CAS  Google Scholar 

  35. Salmon H, Remark R, Gnjatic S et al (2019) Host tissue determinants of tumour immunity. Nat Rev Cancer 19(4):215–227

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pauken KE, Shahid O, Lagattuta KA et al (2021) Single-cell analyses identify circulating anti-tumor CD8 T cells and markers for their enrichment. J Exp Med. https://doi.org/10.1084/jem.20200920

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Grant-in-Aid for Scientific Research (KAKENHI 19K18621 to T.M.; 18H04906, 18K19482, and 19H03792 to N.T.; 18K09150 to T.S.; 18H02939 to M.O.), the Takeda Science Foundation (N.T.), the Kobayashi Foundation for Cancer Research (N.T.), the SGH Foundation for Cancer Research (N.T.), and the Keio Gijuku Academic Development Funds (N.T.). The authors thank JKiC (JSR-Keio University Medical and Chemical Innovation Center) for special assistance to the multiplexed fluorescence imaging system.

Author information

Authors and Affiliations

Authors

Contributions

NT, RM, and MO designed the study. TM, KT, KH, KF, MT, and SM performed the experiments. TS, KK, TT, KS, and TI provided conceptual advice. TM and NT wrote the manuscript.

Corresponding author

Correspondence to Nobuyuki Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 161 kb)

Supplementary file2 (DOCX 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murakami, T., Tanaka, N., Takamatsu, K. et al. Multiplexed single-cell pathology reveals the association of CD8 T-cell heterogeneity with prognostic outcomes in renal cell carcinoma. Cancer Immunol Immunother 70, 3001–3013 (2021). https://doi.org/10.1007/s00262-021-03006-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03006-2

Keywords

Navigation