Skip to main content

Advertisement

Log in

Latency-associated peptide identifies therapeutically resistant muscle-invasive bladder cancer with poor prognosis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Latency-associated peptide (LAP) was identified as crucial immune regulator in tumor microenvironment (TME) in recent researches. In this study, we aimed to estimate the predictive value of LAP expression for clinical survival and therapeutic response in muscle-invasive bladder cancer (MIBC).

Methods

Our study encompassed 140 MIBC patients from Zhongshan Hospital (ZSHS cohort), 401 patients from The Cancer Genome Atlas (TCGA cohort) and 195 patients received PDL1 blockade from IMvigor210 trial. Survival analyses were conducted through Kaplan–Meier curve and Cox regression model. LAP expression and its association with immune contexture were evaluated in ZSHS and TCGA cohort.

Results

We found that high intratumoral LAP+ cells infiltration anticipated inferior survival and adjuvant chemotherapy (ACT) response, and was closely related to an immunoevasive contexture with increased M2 macrophages, neutrophils and conspicuously a cluster of highly exhausted CD8+ T cells. The combinational analysis of LAP+ cells and CD8+ T cells infiltration stratified patients into distinct risk groups with implications for therapeutic sensitivity to PDL1 blockade and refinement of molecular classification in MIBC.

Conclusions

LAP expression was correlated with patients’ inferior prognosis, ACT-tolerance and an immunoevasive TME with exhausted CD8+ T cell infiltration, suggesting that LAP could serve as a promising therapeutic target in MIBC. Simultaneously, our novel TME classification based on LAP+ cells and CD8+ T cells infiltration and its potential in appraising PDL1 blockade application for MIBC patients deserved further validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated that are relevant to the results presented in this article are included in this article. Other data that were not relevant for the results presented here are available from the corresponding author Dr. Xu upon reasonable request.

Abbreviations

ACT :

Adjuvant chemotherapy

AJCC :

American Joint Committee on Cancer

CI :

Confidence interval

FPKM :

Fragments per kilobase of exon model per million mapped fragments

GSEA :

Gene sets enrichment analysis

HR :

Hazard ratios

ICIs :

Immune checkpoint inhibitors

IHC :

Immunohistochemistry

LAP :

Latency-associated peptide

LVI :

Lymphatic vessel invasion

MIBC :

Muscle-invasive bladder cancer

NMIBC :

Non-muscle-invasive bladder cancer

OS :

Overall survival

RFS :

Recurrence-free survival

TCGA :

The Cancer Genome Atlas

TGF-β :

Transforming growth factor-β

TMA :

Tissue microarray

TME :

Tumor microenvironment

TNM :

Tumor–node–metastasis

ZSHS :

Zhongshan Hospital

References

  1. Hurst C, Rosenberg J, Knowles M (2018) SnapShot: bladder cancer. Cancer Cell 34(2):350-350.e1. https://doi.org/10.1016/j.ccell.2018.07.013

    Article  CAS  PubMed  Google Scholar 

  2. Robertson AG, Kim J, Al-Ahmadie H et al (2017) Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171(3):540–56.e25. https://doi.org/10.1016/j.cell.2017.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Knowles MA, Hurst CD (2015) Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer 15(1):25–41. https://doi.org/10.1038/nrc3817

    Article  CAS  PubMed  Google Scholar 

  4. Witjes JA, Bruins HM, Cathomas R et al (2021) European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines. Eur Urol 79(1):82–104. https://doi.org/10.1016/j.eururo.2020.03.055

    Article  CAS  PubMed  Google Scholar 

  5. von der Maase H, Hansen SW, Roberts JT et al (2000) Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol 18(17):3068–3077. https://doi.org/10.1200/jco.2000.18.17.3068

    Article  PubMed  Google Scholar 

  6. Vasekar M, Degraff D, Joshi M (2016) Immunotherapy in bladder cancer. Curr Mol Pharmacol 9(3):242–251. https://doi.org/10.2174/1874467208666150716120945

    Article  CAS  PubMed  Google Scholar 

  7. Patel VG, Oh WK, Galsky MD (2020) Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin 70(5):404–423. https://doi.org/10.3322/caac.21631

    Article  PubMed  Google Scholar 

  8. Crispen PL, Kusmartsev S (2020) Mechanisms of immune evasion in bladder cancer. Cancer Immunol Immunother 69(1):3–14. https://doi.org/10.1007/s00262-019-02443-4

    Article  PubMed  Google Scholar 

  9. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P (2010) The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 10(8):554–567. https://doi.org/10.1038/nri2808

    Article  CAS  PubMed  Google Scholar 

  10. Liu H, Zhu Y, Zhu H et al (2019) Role of transforming growth factor β1 in the inhibition of gastric cancer cell proliferation by melatonin in vitro and in vivo. Oncol Rep 42(2):753–762. https://doi.org/10.3892/or.2019.7190

    Article  CAS  PubMed  Google Scholar 

  11. Khalil N (1999) TGF-beta: from latent to active. Microbes Infect 1(15):1255–1263. https://doi.org/10.1016/s1286-4579(99)00259-2

    Article  CAS  PubMed  Google Scholar 

  12. Batlle E, Massague J (2019) Transforming growth factor-beta signaling in immunity and cancer. Immunity 50(4):924–940. https://doi.org/10.1016/j.immuni.2019.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi M, Zhu J, Wang R et al (2011) Latent TGF-β structure and activation. Nature 474(7351):343–349. https://doi.org/10.1038/nature10152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gabriely G, da Cunha AP, Rezende RM et al (2017) Targeting latency-associated peptide promotes antitumor immunity. Sci Immunol. https://doi.org/10.1126/sciimmunol.aaj1738

    Article  PubMed  PubMed Central  Google Scholar 

  15. Flemming A (2017) Tumour Immunology: LAP targeting reduces tolerogenic cells in cancer. Nat Rev Immunol 17(7):402–403. https://doi.org/10.1038/nri.2017.65

    Article  PubMed  Google Scholar 

  16. Mariathasan S, Turley SJ, Nickles D et al (2018) TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693):544–548. https://doi.org/10.1038/nature25501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA (2018) Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 1711:243–259. https://doi.org/10.1007/978-1-4939-7493-1_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14(12):717–734. https://doi.org/10.1038/nrclinonc.2017.101

    Article  CAS  PubMed  Google Scholar 

  19. Schneider AK, Chevalier MF, Derré L (2019) The multifaceted immune regulation of bladder cancer. Nat Rev Urol 16(10):613–630. https://doi.org/10.1038/s41585-019-0226-y

    Article  CAS  PubMed  Google Scholar 

  20. Baitsch L, Baumgaertner P, Devêvre E et al (2011) Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J Clin Invest 121(6):2350–2360. https://doi.org/10.1172/jci46102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Z, Zhou Q, Wang Z et al (2020) Intratumoral TIGIT(+) CD8(+) T-cell infiltration determines poor prognosis and immune evasion in patients with muscle-invasive bladder cancer. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-000978

    Article  PubMed  PubMed Central  Google Scholar 

  22. Angell H, Galon J (2013) From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr Opin Immunol 25(2):261–267. https://doi.org/10.1016/j.coi.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  23. Bruni D, Angell HK, Galon J (2020) The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer 20(11):662–680. https://doi.org/10.1038/s41568-020-0285-7

    Article  CAS  PubMed  Google Scholar 

  24. Fakih M, Ouyang C, Wang C et al (2019) Immune overdrive signature in colorectal tumor subset predicts poor clinical outcome. J Clin Invest 129(10):4464–4476. https://doi.org/10.1172/jci127046

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huntsman DG, Ladanyi M (2018) The molecular pathology of cancer: from pan-genomics to post-genomics. J Pathol 244(5):509–511. https://doi.org/10.1002/path.5057

    Article  CAS  PubMed  Google Scholar 

  26. Kamoun A, de Reyniès A, Allory Y et al (2020) A consensus molecular classification of muscle-invasive bladder cancer. Eur Urol 77(4):420–433. https://doi.org/10.1016/j.eururo.2019.09.006

    Article  PubMed  Google Scholar 

  27. Tang H, Qiao J, Fu YX (2016) Immunotherapy and tumor microenvironment. Cancer Lett 370(1):85–90. https://doi.org/10.1016/j.canlet.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  28. Necchi A, Pond GR, Moschini M et al (2019) Development of a prediction tool for exclusive locoregional recurrence after radical cystectomy in patients with muscle-invasive bladder cancer. Clin Genitourin Cancer 17(1):7-14.e3. https://doi.org/10.1016/j.clgc.2018.09.008

    Article  PubMed  Google Scholar 

  29. Seiler R, Ashab HAD, Erho N et al (2017) Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur Urol 72(4):544–554. https://doi.org/10.1016/j.eururo.2017.03.030

    Article  CAS  PubMed  Google Scholar 

  30. Tan TZ, Rouanne M, Tan KT, Huang RY, Thiery JP (2019) Molecular subtypes of urothelial bladder cancer: results from a meta-cohort analysis of 2411 tumors. Eur Urol 75(3):423–432. https://doi.org/10.1016/j.eururo.2018.08.027

    Article  CAS  PubMed  Google Scholar 

  31. Xie F, Ling L, van Dam H, Zhou F, Zhang L (2018) TGF-β signaling in cancer metastasis. Acta Biochim Biophys Sin (Shanghai) 50(1):121–132. https://doi.org/10.1093/abbs/gmx123

    Article  CAS  Google Scholar 

  32. Batlle E, Massagué J (2019) Transforming growth factor-β signaling in immunity and cancer. Immunity 50(4):924–940. https://doi.org/10.1016/j.immuni.2019.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruffell B, Chang-Strachan D, Chan V et al (2014) Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26(5):623–637. https://doi.org/10.1016/j.ccell.2014.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571. https://doi.org/10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15(8):486–499. https://doi.org/10.1038/nri3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dimeloe S, Gubser P, Loeliger J et al (2019) Tumor-derived TGF-β inhibits mitochondrial respiration to suppress IFN-γ production by human CD4(+) T cells. Sci Signal. https://doi.org/10.1126/scisignal.aav3334

    Article  PubMed  Google Scholar 

  37. Li S, Liu M, Do MH et al (2020) Cancer immunotherapy via targeted TGF-β signalling blockade in T(H) cells. Nature 587(7832):121–125. https://doi.org/10.1038/s41586-020-2850-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu M, Kuo F, Capistrano KJ et al (2020) TGF-β suppresses type 2 immunity to cancer. Nature 587(7832):115–120. https://doi.org/10.1038/s41586-020-2836-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Lingli Chen (Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China) and Dr. Yunyi Kong (Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China) for their excellent pathological technology help.

Funding

This study was funded by grants from National Natural Science Foundation of China (31770851, 81872082, 81902556, 82002670), Shanghai Municipal Natural Science Foundation (19ZR1431800), Shanghai Sailing Program (18YF1404500, 19YF1427200, 21YF1407000), Shanghai Municipal Commission of Health and Family Planning Program (20174Y0042, 201840168, 20184Y0151) and Fudan University Shanghai Cancer Center for Outstanding Youth Scholars Foundation (YJYQ201802). All these study sponsors have no roles in the study design, in the collection, analysis and interpretation of data.

Author information

Authors and Affiliations

Authors

Contributions

R. Y, H. Z, Z. L and K. J were involved in acquisition of data, analysis and interpretation of data, statistical analysis and drafting of the manuscript; C. L, S. Y, Y. Y, R. Y, H. Z, Y. W, L. L and Y. Z helped in technical and material support; Y. C, J. X, L. X and Z. W contributed to study concept and design, analysis and interpretation of data, drafting of the manuscript, obtained funding and study supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yuan Chang, Jiejie Xu, Le Xu or Zewei Wang.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Consent for publication

All authors provide their consent for publication.

Ethics approval and consent to participate

The study followed the Declaration of Helsinki and was approved by the Clinical Research Ethics Committee of Zhongshan Hospital. Signed informed consent was obtained from each patient.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

262_2021_2987_MOESM1_ESM.tif

Supplementary Figure 1. Patient cohort and IHC staining of LAP expression in MIBC. (A) Enrollment process of patients in ZSHS cohort and TCGA cohort. (B) Representative immunohistochemistry images of LAP+ cells. FFPE, Formalin-Fixed and Paraffin-Embedded (TIF 1220 kb)

262_2021_2987_MOESM2_ESM.tif

Supplementary Figure 2. Association of tumor immune microenvironment with LAP expression. (A) IHC evaluation of various immune cells between LAP+ cells low/high subgroups in ZSHS cohort. Mann–Whitney test was adopted (TIF 457 kb)

262_2021_2987_MOESM3_ESM.tif

Supplementary Figure 3. The survival benefit of CD8+ T cells infiltration is impaired by LAP expression. (A-B) Kaplan–Meier curve of OS according to LAP/TGFB1 expression and CD8+ T cells infiltration in TCGA cohort (A) and ZSHS cohort (B) (TIF 390 kb)

262_2021_2987_MOESM4_ESM.tif

Supplementary Figure 4. CD8+ T cells infiltration fails to predict prognosis in patients with high LAP/TGFB1 subgroup. (A-D) Kaplan–Meier curve of OS (A, C) and RFS (B, D) according to CD8+ cells infiltration in all patients (left), patients with low LAP/TGFB1 expression (middle) and patients with high LAP/TGFB1 expression (right) in ZSHS cohort (A, B) and TCGA cohort (C, D) (TIF 1642 kb)

262_2021_2987_MOESM5_ESM.tif

Supplementary Figure 5. Association of TME classification based on LAP expression and CD8+ T cells infiltration with clinical outcomes and molecular features in MIBC. (A-B) Kaplan-Meier curves of RFS between three clusters in ZSHS cohort (A) and TCGA cohort (B) by log-rank test. (C) Comparison of consensus molecular systems with three clusters in TCGA cohort by Chi-square test. (D) Kaplan–Meier curve of RFS by log-rank test in basal/squamous subtype between cluster II and cluster III patients in TCGA cohort (TIF 524 kb)

Supplementary Table 1. Patient characteristics and relationship with LAP/TGFB1 level (DOCX 72 kb)

Supplementary Table 2. Immunohistochemistry (IHC) antibodies (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, R., Zeng, H., Liu, Z. et al. Latency-associated peptide identifies therapeutically resistant muscle-invasive bladder cancer with poor prognosis. Cancer Immunol Immunother 71, 301–310 (2022). https://doi.org/10.1007/s00262-021-02987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02987-4

Keywords

Navigation