A novel immune-related gene-based prognostic signature to predict biochemical recurrence in patients with prostate cancer after radical prostatectomy


Accumulating evidences indicates that the immune landscape signature dramatically correlates with tumorigenesis and prognosis of prostate cancer (PCa). Here, we identified a novel immune-related gene-based prognostic signature (IRGPS) to predict biochemical recurrence (BCR) after radical prostatectomy. We also explored the correlation between IRGPS and tumor microenvironment. We identified an IRGPS consisting of seven immune-related genes (PPARGC1A, AKR1C2, COMP, EEF1A2, IRF5, NTM, and TPX2) that were related to the BCR-free survival of PCa patients. The high-risk patients exhibited a higher fraction of regulatory T cells and M2 macrophages than the low-risk BCR patients (P < 0.05) as well as a lower fraction of resting memory CD4 T cells and resting mast cells. These high-risk patients also had higher expression levels of CTLA4, TIGIT, PDCD1, LAG3, and TIM3. Finally, a strong correlation was detected between IRGPS and specific clinicopathological features, including Gleason scores and tumor stage. In conclusion, our study reveals the clinical significance and potential functions of the IRGPS, provides more data for predicting outcomes, and suggests more effective immunotherapeutic target strategies for PCa.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

The data of this study are freely available from TCGA database (https://cancergenome.nih.gov/), GEO database (https://www.ncbi.nlm.nih.gov/geo/). The authors did not have special access privileges.



Biochemical recurrence


Differentially expressed immune-related genes


Immune-related gene-based prognostic signature


Metastatic castration-resistant PCa


Tumor-infiltrating lymphocyte


Tumor mutation burden


  1. 1.

    Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Google Scholar 

  2. 2.

    Mateo J, Fizazi K, Gillessen S, Heidenreich A, Perez-Lopez R, Oyen WJG, Shore N, Smith M, Sweeney C, Tombal B, Tomlins SA, de Bono JS (2019) Managing nonmetastatic castration-resistant prostate cancer. Eur Urol 75(2):285–293. https://doi.org/10.1016/j.eururo.2018.07.035

    Google Scholar 

  3. 3.

    Lu X, Horner JW, Paul E, Shang X, Troncoso P, Deng P, Jiang S, Chang Q, Spring DJ, Sharma P, Zebala JA, Maeda DY, Wang YA, DePinho RA (2017) Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 545(7652):116. https://doi.org/10.1038/nature21676

    Google Scholar 

  4. 4.

    Aragon-Ching JB, Siegel R, Frazier H II, Andrawis R, Hendricks F, Phillips M, Jarrett T, Guebre-Xabiher H, Patierno S, Simmens SJ (2015) Circulating tumor cells in biochemical recurrence of prostate cancer. Clin Genitourin Cancer 13(5):e341-345. https://doi.org/10.1016/j.clgc.2015.04.003

    Google Scholar 

  5. 5.

    Liesenfeld LKM, Gschwend JE, Herkommer K (2016) Prognostic factors for biochemical recurrence more than 10 years after radical prostatectomy. J Urol 197(1):143–148. https://doi.org/10.1016/j.juro.2016.07.004

    Google Scholar 

  6. 6.

    Daskivich TJHL, Amling CL, Aronson WJ, Cooperberg MR, Kane CJ, Klaassen Z, Terris MK, Freedland SJ (2020) Competing risks of mortality among men with biochemical recurrence after radical prostatectomy. J Urol 204(3):511–517. https://doi.org/10.1097/JU.0000000000001036

    Google Scholar 

  7. 7.

    Ong CWMP, Alvi MA, McQuaid S, Waugh D, Mills I, Salto-Tellez M (2018) A gene signature associated with PTEN activation defines good prognosis intermediate risk prostate cancer cases. J Pathol Clin Res 4(2):103–113. https://doi.org/10.1002/cjp2.94

    Google Scholar 

  8. 8.

    Sinnott JAPS, Tyekucheva S, Gerke T, Lis R, Rider JR, Fiorentino M, Stampfer MJ, Mucci LA, Loda M, Penney KL (2017) Prognostic utility of a new mRNA expression signature of gleason score. Clin Cancer Res 23(1):81–87. https://doi.org/10.1158/1078-0432.CCR-16-1245

    Google Scholar 

  9. 9.

    Abou-Ouf HAM, Takhar M, Erho N, Donnelly B, Davicioni E, Karnes RJ, Bismar TA (2018) Validation of a 10-gene molecular signature for predicting biochemical recurrence and clinical metastasis in localized prostate cancer. J Cancer Res Clin Oncol 144(5):883–891. https://doi.org/10.1007/s00432-018-2615-7

    Google Scholar 

  10. 10.

    Kim SHPW, Park BR, Joo J, Joung JY, Seo HK, Chung J, Lee KH (2017) PSCA, Cox-2, and Ki-67 are independent, predictive markers of biochemical recurrence in clinically localized prostate cancer: a retrospective study. Asian J Androl 19(4):458–462. https://doi.org/10.4103/1008-682X.180798

    Google Scholar 

  11. 11.

    Zhang QXJ, Wang Y, Zhang J, Ji C, Cong R, Wang Y, Song N (2019) Tumor infiltrating M2 macrophages could predict biochemical recurrence of localized prostate cancer after radical prostatectomy. Exp Cell Res 384(1):111588. https://doi.org/10.1016/j.yexcr.2019.111588

    Google Scholar 

  12. 12.

    Li HWZ, Zhang Y, Sun G, Ding B, Yan L, Liu H, Guan W, Hu Z, Wang S, Cheng F, Xu H, Zhang X, Ye Z (2019) The immune checkpoint regulator PDL1 is an independent prognostic biomarker for biochemical recurrence in prostate cancer patients following adjuvant hormonal therapy. J Cancer 10(14):3102–3111. https://doi.org/10.7150/jca.30384

    Google Scholar 

  13. 13.

    Papanicolau-Sengos A, Yang Y, Pabla S, Lenzo FL, Kato S, Kurzrock R, DePietro P, Nesline M, Conroy J, Glenn S, Chatta G, Morrison C (2019) Identification of targets for prostate cancer immunotherapy. Prostate 79(5):498–505. https://doi.org/10.1002/pros.23756

    Google Scholar 

  14. 14.

    Zhu S, Han X, Qiao X, Chen S (2020) The Immune Landscape and Prognostic Immune Key Genes Potentially Involved in Modulating Synaptic Functions in Prostate Cancer. Front Oncol 10:1330. https://doi.org/10.3389/fonc.2020.01330

    Google Scholar 

  15. 15.

    Taylor BSSN, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22. https://doi.org/10.1016/j.ccr.2010.05.026

    Google Scholar 

  16. 16.

    Ross-Adams H, Lamb A, Dunning MJ, Halim S, Lindberg J, Massie CM, Egevad LA, Russell R, Ramos-Montoya A, Vowler SL, Sharma NL, Kay J, Whitaker H, Clark J, Hurst R, Gnanapragasam VJ, Shah NC, Warren AY, Cooper CS, Lynch AG, Stark R, Mills IG, Grönberg H, Neal DE; CamCaP Study Group (2015) Integration of copy number and transcriptomics provides risk stratification in prostate cancer: a discovery and validation cohort study. EBioMedicine 2(9):1133–1144. https://doi.org/10.1016/j.ebiom.2015.07.017

    Google Scholar 

  17. 17.

    HarrellCaliff FER, Pryor DB, Lee KL, Rosati RA (1982) Evaluating the yield of medical tests. JAMA 247(18):2543–2546

    Google Scholar 

  18. 18.

    Sholl LMHF, Hwang D, Botling J, Lopez-Rios F, Bubendorf L, Mino-Kenudson M, Roden AC, Beasley MB, Borczuk A, Brambilla E, Chen G, Chou TY, Chung JH, Cooper WA, Dacic S, Lantuejoul S, Jain D, Lin D, Minami Y, Moreira A, Nicholson AG, Noguchi M, Papotti M, Pelosi G, Poleri C, Rekhtman N, Tsao MS, Thunnissen E, Travis W, Yatabe Y, Yoshida A, Daigneault JB, Zehir A, Peters S, Wistuba II, Kerr KM, Longshore JW (2020) The promises and challenges of tumor mutation burden as an immunotherapy biomarker: a perspective from the international association for the study of lung cancer pathology committee. J Thorac Oncol 15(9):1409–1424. https://doi.org/10.1016/j.jtho.2020.05.019

    Google Scholar 

  19. 19.

    Zhao SGLJ, Chang SL, Das R, Erho N, Liu Y, Sjöström M, Den RB, Freedland SJ, Klein EA, Karnes RJ, Schaeffer EM, Xu M, Speers C, Nguyen PL, Ross AE, Chan JM, Cooperberg MR, Carroll PR, Davicioni E, Fong L, Spratt DE, Feng FY (2019) The immune landscape of prostate cancer and nomination of PD-L2 as a potential therapeutic target. Natl Cancer Inst 111(3):301–310. https://doi.org/10.1093/jnci/djy141

    Google Scholar 

  20. 20.

    Chow KHP, Stuchbery R, Peters JS, Costello AJ, Hovens CM, Corcoran NM (2019) Late biochemical recurrence after radical prostatectomy is associated with a slower rate of progression. BJU Int 123(6):976–984. https://doi.org/10.1111/bju.14556

    Google Scholar 

  21. 21.

    D’Andrea DSF, Abufaraj M, Gust K, Foerster B, Vartolomei MD, Kimura S, Mari A, Briganti A, Remzi M, Seitz CK, Mathieu R, Karakiewicz PI, Shariat SF (2018) Clinical value of cholinesterase in the prediction of biochemical recurrence after radical prostatectomy. Urol Oncol 36(12):528. https://doi.org/10.1016/j.urolonc.2018.09.015

    Google Scholar 

  22. 22.

    Shao NTH, Mi Y, Zhu Y, Wan F, Ye D (2020) A novel gene signature to predict immune infiltration and outcome in patients with prostate cancer. Oncoimmunology 9(1):1762473. https://doi.org/10.1080/2162402X.2020

    Google Scholar 

  23. 23.

    Mohler JL (2010) The 2010 NCCN clinical practice guidelines in oncology on prostate cancer. J Natl Compr Cancer Netw 8(2):145. https://doi.org/10.6004/jnccn.2010.0010

    Google Scholar 

  24. 24.

    Erho NCA, Vergara IA, Mitra AP, Ghadessi M, Buerki C, Bergstralh EJ, Kollmeyer T, Fink S, Haddad Z, Zimmermann B, Sierocinski T, Ballman KV, Triche TJ, Black PC, Karnes RJ, Klee G, Davicioni E, Jenkins RB (2013) Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE 8(6):e66855. https://doi.org/10.1371/journal.pone.0066855

    Google Scholar 

  25. 25.

    Knezevic DGA, Natraj N, Cherbavaz DB, Clark-Langone KM, Snable J, Watson D, Falzarano SM, Magi-Galluzzi C, Klein EA, Quale C (2013) Analytical validation of the Oncotype DX prostate cancer assay-a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genom 14:690. https://doi.org/10.1186/1471-2164-14-690

    Google Scholar 

  26. 26.

    Cuzick J, Swanson G, Fisher G, Brothman AR, Berney DM, Reid JE, Mesher D, Speights VO, Stankiewicz E, Foster CS, Møller H, Scardino P, Warren JD, Park J, Younus A, Flake DD, Wagner S, Gutin A, Lanchbury JS, Stone S, Transatlantic Prostate Group (2011) Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol 12(3):245–255. https://doi.org/10.1016/S1470-2045(10)70295-3

    Google Scholar 

  27. 27.

    Lin XKA, Gu Y, Chow MJ, Xu H, Major P, Tang D (2019) Assessment of biochemical recurrence of prostate cancer (Review). Int J Oncol 55(6):1194–1212. https://doi.org/10.3892/ijo.2019.4893

    Google Scholar 

  28. 28.

    Zhan BHL, Chen Y, Ye W, Li J, Chen J, Yang S, Jiang W (2020) miR-196a-mediated downregulation of p27kip1 protein promotes prostate cancer proliferation and relates to biochemical recurrence after radical prostatectomy. Prostate 80(12):1024–1037. https://doi.org/10.1002/pros.24036

    Google Scholar 

  29. 29.

    Li TLR, Li YH, Zhong S, Chen YY, Zhang CM, Hu MM, Shen ZJ (2012) miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. J Urol 187(4):1466–1472. https://doi.org/10.1016/j.juro.2011.11.082

    Google Scholar 

  30. 30.

    Kim SHKS, Joung JY, Lee GK, Hong EK, Kang KM, Yu A, Nam BH, Chung J, Seo HK, Park WS, Lee KH (2015) Overexpression of ERG and wild-type PTEN are associated with favorable clinical prognosis and low biochemical recurrence in prostate cancer. PLoS ONE 10(4):e0122498. https://doi.org/10.1371/journal.pone.0122498

    Google Scholar 

  31. 31.

    Zhang WSP, Wang S, Song J, Liu K, Wang C, Ran L (2018) ZNF154 is a promising diagnosis biomarker and predicts biochemical recurrence in prostate cancer. Gene 675:136–143. https://doi.org/10.1016/j.gene.2018.06.104

    Google Scholar 

  32. 32.

    Li FXY, Liu RL (2019) SAMD5 mRNA was overexpressed in prostate cancer and can predict biochemical recurrence after radical prostatectomy. Int Urol Nephrol 51(3):443–451. https://doi.org/10.1007/s11255-019-02096-3

    Google Scholar 

  33. 33.

    Jiang DXC, Xian T, Wang L, Mao Y, Zhang J, Pang J (2018) Association of doublecortin-like kinase 1 with tumor aggressiveness and poor biochemical recurrence-free survival in prostate cancer. Onco Targets Ther 11:1077–1086. https://doi.org/10.2147/OTT.S157295

    Google Scholar 

  34. 34.

    Lughezzani GLM, Buffi NM, Abrate A, Mistretta FA, Hurle R, Pasini L, Castaldo L, Zandegiacomo De Zorzi S, Peschechera R, Fiorini G, Taverna G, Casale P, Guazzoni G (2015) Preoperative prostate health index is an independent predictor of early biochemical recurrence after radical prostatectomy: results from a prospective single-center study. Urol Oncol 337(8):e7-14. https://doi.org/10.1016/j.urolonc.2015.05.007

    Google Scholar 

  35. 35.

    Cantiello FCF, Russo GI, Gangemi V, Ferro M, Vartolomei MD, Lucarelli G, Mirabelli M, Scafuro C, Ucciero G, De Cobelli O, Morgia G, Damiano R, Cascini GL (2018) Comparison between 64Cu-PSMA-617 PET/CT and 18F-Choline PET/CT imaging in early diagnosis of prostate cancer biochemical recurrence. Clin Genitourin Cancer 16(5):385–391. https://doi.org/10.1016/j.clgc.2018.05.014

    Google Scholar 

  36. 36.

    Huang YLJ, Chang A, Ye H, Zhao H, Zhuo X (2020) Identification of an immune-related key gene, PPARGC1A, in the development of anaplastic thyroid carcinoma: in silico study and in vitro evaluation. Minerva Endocrinol. https://doi.org/10.23736/S0391-1977.20.03182-X

    Google Scholar 

  37. 37.

    Lohan SBBK, Lauer AC, Friedrich A, Lademann J, Buss A, Sabat R, Wolk K, Meinke MC (2020) Analysis of the status of the cutaneous endogenous and exogenous antioxidative system of smokers and the short-term effect of defined smoking thereon. Antioxidants (Basel) 9(6):537. https://doi.org/10.3390/antiox9060537

    Google Scholar 

  38. 38.

    Dakhova ORD, Ittmann M (2014) Genes upregulated in prostate cancer reactive stroma promote prostate cancer progression in vivo. Clin Cancer Res 20(1):100–109. https://doi.org/10.1158/1078-0432.CCR-13-1184

    Google Scholar 

  39. 39.

    Scaggiante BDB, Bonin S, Grassi M, Zennaro C, Farra R, Cristiano L, Siracusano S, Zanconati F, Giansante C, Grassi G (2012) Dissecting the expression of EEF1A1/2 genes in human prostate cancer cells: the potential of EEF1A2 as a hallmark for prostate transformation and progression. Br J Cancer 106(1):166–173. https://doi.org/10.1038/bjc.2011.500

    Google Scholar 

  40. 40.

    Sun YDC, Wang B, Zhang Y, Liu X, Ren G (2014) Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer. Biochem Biophys Res Commun 450(1):1–6. https://doi.org/10.1016/j.bbrc.2014.05.045

    Google Scholar 

  41. 41.

    De SZB, Shih T, Singh S, Winkler A, Donnelly R, Barnes BJ (2017) B cell-intrinsic role for IRF5 in TLR9/BCR-induced human B cell activation, proliferation, and plasmablast differentiation. Front Immunol 8:1938. https://doi.org/10.3389/fimmu.2017.01938

    Google Scholar 

  42. 42.

    TE Pelch KE, Merrick BA, Waalkes MP (2015) Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium. Toxicol Appl Pharmacol 286(3):159–167. https://doi.org/10.1016/j.taap.2015.04.011

    Google Scholar 

  43. 43.

    Pan HWSH, Hsu CW, Huang GJ, Wu TT (2017) Targeted TPX2 increases chromosome missegregation and suppresses tumor cell growth in human prostate cancer. Onco Targets Ther 10:3531–3543. https://doi.org/10.2147/OTT.S136491

    Google Scholar 

  44. 44.

    He SSJ, Mao J, Luo X, Liu W, Liu R, Yang F (2019) The expression of miR-375 in prostate cancer: a study based on GEO, TCGA data and bioinformatics analysis. Pathol Res Pract 215(6):152375. https://doi.org/10.1016/j.prp.2019.03.004

    Google Scholar 

  45. 45.

    Shao NTH, Qu Y, Wan F, Ye D (2019) Development and validation of lncRNAs-based nomogram for prediction of biochemical recurrence in prostate cancer by bioinformatics analysis. J Cancer 10(13):2927–2934. https://doi.org/10.7150/jca.31132

    Google Scholar 

  46. 46.

    Rui XSS, Wang L, Leng J (2019) Identification of recurrence marker associated with immune infiltration in prostate cancer with radical resection and build prognostic nomogram. BMC Cancer 19(1):1179. https://doi.org/10.1186/s12885-019-6391-9

    Google Scholar 

  47. 47.

    Liu SWW, Zhao Y, Liang K, Huang Y (2020) Identification of potential key genes for pathogenesis and prognosis in prostate cancer by integrated analysis of gene expression profiles and the cancer genome atlas. Front Oncol 10:809. https://doi.org/10.3389/fonc.2020.00809

    Google Scholar 

  48. 48.

    Wang W, Yang X, Dai J, Lu Y, Zhang J, Keller ET (2019) Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion. Oncogene 38(23):4540–4559. https://doi.org/10.1038/s41388-019-0736-3

    Google Scholar 

  49. 49.

    Baci D, Bruno A, Cascini C, Gallazzi M, Mortara L, Sessa F, Pelosi G, Albini A, Noonan DM (2019) Acetyl-L-Carnitine downregulates invasion (CXCR4/CXCL12, MMP-9) and angiogenesis (VEGF, CXCL8) pathways in prostate cancer cells: rationale for prevention and interception strategies. J Exp Clin Cancer Res 38(1):464. https://doi.org/10.1186/s13046-019-1461-z

    Google Scholar 

  50. 50.

    Wu YM, Cieslik M, Lonigro RJ, Vats P, Reimers MA, Cao X, Ning Y, Wang L, Kunju LP, de Sarkar N, Heath EI, Chou J, Feng FY, Nelson PS, de Bono JS, Zou W, Montgomery B, Alva A; PCF/SU2C International Prostate Cancer Dream Team, Robinson DR, Chinnaiyan AM (2018) Inactivation of CDK 012 delineates a distinct immunogenic class of advanced prostate cancer. Cell 173(7):1770–1782. https://doi.org/10.1016/j.cell.2018.04.034

    Google Scholar 

  51. 51.

    Ugge HDM, Carlsson J, Bowden M, Davidsson S, Mucci LA, Fall K, Andersson SO, Andrén O (2019) Circulating inflammation markers and prostate cancer. Prostate 79(11):1338–1346. https://doi.org/10.1002/pros.23842

    Google Scholar 

  52. 52.

    Nørøxe DS, Yde CW, Østrup O, Michaelsen SR, Schmidt AY, Kinalis S, Torp MH, Skjøth-Rasmussen J, Brennum J, Hamerlik P, Poulsen HS, Nielsen FC, Lassen U (2020) Genomic profiling of newly diagnosed glioblastoma patients and its potential for clinical utility—a prospective, translational study. Mol Oncol 14(11):2727

    Google Scholar 

  53. 53.

    Wang X, Li M (2019) Correlate tumor mutation burden with immune signatures in human cancers. BMC Immunol 20(1):4. https://doi.org/10.1186/s12865-018-0285-5

    Google Scholar 

  54. 54.

    Linch M, Goh G, Hiley C, Shanmugabavan Y, McGranahan N, Rowan A, Wong YNS, King H, Furness A, Freeman A, Linares J, Akarca A, Herrero J, Rosenthal R, Harder N, Schmidt G, Wilson GA, Birkbak NJ, Mitter R, Dentro S, Cathcart P, Arya M, Johnston E, Scott R, Hung M, Emberton M, Attard G, Szallasi Z, Punwani S, Quezada SA, Marafioti T, Gerlinger M, Ahmed HU, Swanton C (2017) Intratumoural evolutionary landscape of high-risk prostate cancer: the PROGENY study of genomic and immune parameters. Ann Oncol 28(10):2472–2480. https://doi.org/10.1093/annonc/mdx355

    Google Scholar 

  55. 55.

    Noman MZ, Parpal S, Van Moer K, Xiao M, Yu Y, Viklund J, De Milito A, Hasmim M, Andersson M, Amaravadi RK, Martinsson J, Berchem G, Janji B (2020) Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy. Sci Adv 6(18):eaax7881. https://doi.org/10.1126/sciadv.aax7881

    Google Scholar 

  56. 56.

    Handa S, Hans B, Goel S, Bashorun HO, Dovey Z, Tewari A (2020) Immunotherapy in prostate cancer: current state and future perspectives. Ther Adv Urol 12:1756287220951404. https://doi.org/10.1177/1756287220951404

    Google Scholar 

  57. 57.

    Shen YC, Ghasemzadeh A, Kochel CM, Nirschl TR, Francica BJ, Lopez-Bujanda ZA, Carrera Haro MA, Tam A, Anders RA, Selby MJ, Korman AJ, Drake CG (2018) Combining intratumoral Treg depletion with androgen deprivation therapy (ADT): preclinical activity in the Myc-CaP model. Prostate Cancer Prostatic Dis 21(1):113–125. https://doi.org/10.1038/s41391-017-0013-x

    Google Scholar 

  58. 58.

    Rodriguez M, Siwko S, Zeng L, Li J, Yi Z, Liu M (2016) Prostate-specific G-protein-coupled receptor collaborates with loss of PTEN to promote prostate cancer progression. Oncogene 35(9):1153–1162. https://doi.org/10.1038/onc.2015.170

    Google Scholar 

  59. 59.

    Erlandsson A, Carlsson J, Lundholm M, Fält A, Andersson SO, Andrén O, Davidsson S (2019) M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate 79(4):363–369. https://doi.org/10.1002/pros.23742

    Google Scholar 

  60. 60.

    Yang S, Liu T, Cheng Y, Bai Y, Liang G (2019) Immune cell infiltration as a biomarker for the diagnosis and prognosis of digestive system cancer. Cancer Sci 110(12):3639–3649. https://doi.org/10.1111/cas.14216

    Google Scholar 

  61. 61.

    Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, Bruneval P, Fridman WH, Becker C, Pagès F, Speicher MR, Trajanoski Z, Galon J (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795. https://doi.org/10.1016/j.immuni.2013

    Google Scholar 

  62. 62.

    Strasner AKM (2015) Immune infiltration and prostate cancer. Front Oncol 5:128. https://doi.org/10.3389/fonc.2015.00128

    Google Scholar 

  63. 63.

    Watanabe MKK, Suzuki S, Muramatsu H, Morinaga S, Kajikawa K, Kobayashi I, Nishikawa G, Kato Y, Zennami K, Nakamura K, Tsuzuki T, Yoshikawa K, Ueda R, Sumitomo M (2019) Increased infiltration of CCR4-positive regulatory T cells in prostate cancer tissue is associated with a poor prognosis. Prostate 79(14):1658–1665. https://doi.org/10.1002/pros.23890

    Google Scholar 

Download references


We are grateful to the TCGA database, GEO database, and ICGC database for the data provided for this study.


This study was funded by grants from the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110033), China Postdoctoral Science Foundation (Grant No. 2019M662865), Distinguished Young Talents in Higher Education Foundation of Guangdong Province (Grant No. 2019KQNCX115 and 2020KZDZX1168), Achievement cultivation and clinical transformation application cultivation projects of the First Affiliated Hospital of Guangzhou Medical University (Grant No. ZH201908), the National Natural Science Foundation of China (No. 81670643 and 81870483), the Collaborative Innovation Project of Guangzhou Education Bureau (No. 1201620011), the Guangzhou Science Technology and Innovation Commission (No. 201704020193), and the Science and Technology Planning Project of Guangdong Province (No. 2017B030314108).

Author information




All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Lv DJ, Wu XK and Chen X. Yang SX, Chen WZ and Wang M assisted in collecting data. The first draft of the manuscript was written by DJL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Zeng GH, Liu YD and Gu D supervised the study.

Corresponding authors

Correspondence to Yongda Liu or Di Gu or Guohua Zeng.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Daojun Lv, Xiangkun Wu and Xi Chen are co-first authors.

Yongda Liu, Di Gu, Guohua Zeng jointly supervised this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1386 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lv, D., Wu, X., Chen, X. et al. A novel immune-related gene-based prognostic signature to predict biochemical recurrence in patients with prostate cancer after radical prostatectomy. Cancer Immunol Immunother (2021). https://doi.org/10.1007/s00262-021-02923-6

Download citation


  • Biochemical recurrence
  • Prognosis
  • Prostate cancer
  • Immunotherapy