Avendaño FM, Aguilar MM, Bermudez M, Lizárraga VE, López CC, Ramos PR (2020) Refocusing the use of psychiatric drugs for treatment of gastrointestinal cancers front. Oncol 10:1452
Google Scholar
Reutovich M, Krasko O, Sukonko O (2020) Efficacy of adjuvant systemic chemotherapy combined with radical surgery and hyperthermic intraperitoneal chemotherapy in gastric cancer treatment. Indian J Surg Oncol 11:337–343
Article
Google Scholar
Huang D, Duan H, Huang H, Tong X, Han Y, Ru G, Qu L, Shou C, Zhao Z (2016) Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition. Sci. Rephttps://doi.org/10.1038/srep20502
Courtois S, Haykal M, Bodineau C et al (2020) Autophagy induced by Helicobacter pylori infection is necessary for gastric cancer stem cell emergence. Gastric Cancer. https://doi.org/10.1007/s10120-020-01118-9
Article
PubMed
Google Scholar
Sun LF, Yang K, Wang YG et al (2020) The role of HER2 in self-renewal, invasion, and tumorigenicity of gastric cancer stem cells. Front Oncol 10:1608. https://doi.org/10.3389/fonc.2020.01608
Article
PubMed
PubMed Central
Google Scholar
Xiao S, Zhou L (2020) Gastric stem cells: physiological and pathological perspectives. Front Cell Dev Biol 8:571536. https://doi.org/10.3389/fcell.2020.571536
Article
PubMed
PubMed Central
Google Scholar
Liu L, Yin S, Brobbey C, Gan W (2020) Ubiquitination in cancer stem cell: roles and targeted cancer therapy. STEMedicine 1:e37. https://doi.org/10.37175/stemedicine.v1i3.37
Article
Google Scholar
Dzobo K, Ganz C, Thomford NE, Senthebane DA (2020) Cancer Stem cell markers in relation to patient survival outcomes: lessons for integrative diagnostics and next-generation anticancer drug development. OMICS. https://doi.org/10.1089/omi.2020.0185
Article
PubMed
Google Scholar
Kesh K, Garrido VT, Dosch A et al (2020) Stroma secreted IL6 selects for “stem-like” population and alters pancreatic tumor microenvironment by reprogramming metabolic pathways. Cell Death Dis 11:967. https://doi.org/10.1038/s41419-020-03168-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee HY, Hong IS (2020) Targeting Liver Cancer Stem Cells: An Alternative Therapeutic Approach for Liver Cancer. Cancers (Basel). 12https://doi.org/10.3390/cancers12102746
Lu R, Zhao G, Yang Y, Jiang Z, Cai J, Hu H (2019) Inhibition of CD133 overcomes cisplatin resistance through inhibiting PI3K/AKT/mTOR signaling pathway and autophagy in CD133-positive gastric cancer cells. Technol Cancer Res Treat 18:1533033819864311. https://doi.org/10.1177/1533033819864311
CAS
Article
PubMed
PubMed Central
Google Scholar
Yiming L, Yunshan G, Bo M et al (2015) CD133 overexpression correlates with clinicopathological features of gastric cancer patients and its impact on survival: a systematic review and meta-analysis. Oncotarget 6:42019–42027. https://doi.org/10.18632/oncotarget.5714
Article
PubMed
PubMed Central
Google Scholar
Huang Y, Li L, Liu W, Tang T, Chen L (2020) The progress of CAR-T therapy in cancer and beyond. STEMedicine 1:e47. https://doi.org/10.37175/stemedicine.v1i3.47
Article
Google Scholar
Liu WT, Liu WB, Gao M, Zhang YY, Gu KS (2019) Expression of ALDH1A1 and CD133 is associated with the prognosis and effect of different chemotherapeutic regimens in gastric cancer. Oncol Lett 18:4573–4582. https://doi.org/10.3892/ol.2019.10798
CAS
Article
PubMed
PubMed Central
Google Scholar
Wen L, Chen XZ, Yang K, Chen ZX, Zhang B, Chen JP, Zhou ZG, Mo XM, Hu JK (2013) Prognostic value of cancer stem cell marker CD133 expression in gastric cancer: a systematic review. PLoS ONE 8:e59154. https://doi.org/10.1371/journal.pone.0059154
CAS
Article
PubMed
PubMed Central
Google Scholar
Xia J, Zhang Y, Qian J, Zhu X, Zhang Y, Zhang J, Zhao G (2013) Isolation, identification and expression of specific human CD133 antibodies. Sci Rep 3:3320. https://doi.org/10.1038/srep03320
Article
PubMed
PubMed Central
Google Scholar
Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378. https://doi.org/10.1016/j.ejphar.2014.07.025
CAS
Article
PubMed
PubMed Central
Google Scholar
Rancoule C, Guy JB, Vallard A, Ben Mrad M, Rehailia A, Magne N (2017) 50th anniversary of cisplatin. Bull Cancer 104:167–176. https://doi.org/10.1016/j.bulcan.2016.11.011
Article
PubMed
Google Scholar
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–1883. https://doi.org/10.1038/onc.2011.384
CAS
Article
PubMed
Google Scholar
Moitra K (2015) Overcoming multidrug resistance in cancer stem cells. Biomed Res Int 2015:635745. https://doi.org/10.1155/2015/635745
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu YP, Yang CJ, Huang MS et al (2013) Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Res 73:406–416. https://doi.org/10.1158/0008-5472.CAN-12-1733
CAS
Article
PubMed
Google Scholar
Glumac PM, LeBeau AM (2018) The role of CD133 in cancer: a concise review. Clin Transl Med 7:18. https://doi.org/10.1186/s40169-018-0198-1
Article
PubMed
PubMed Central
Google Scholar
Hashimoto K, Aoyagi K, Isobe T, Kouhuji K, Shirouzu K (2014) Expression of CD133 in the cytoplasm is associated with cancer progression and poor prognosis in gastric cancer. Gastric Cancer 17:97–106. https://doi.org/10.1007/s10120-013-0255-9
CAS
Article
PubMed
Google Scholar
Rocco A, Liguori E, Pirozzi G et al (2012) CD133 and CD44 cell surface markers do not identify cancer stem cells in primary human gastric tumors. J Cell Physiol 227:2686–2693. https://doi.org/10.1002/jcp.23013
CAS
Article
PubMed
Google Scholar
Thakur B, Ray P (2017) Cisplatin triggers cancer stem cell enrichment in platinum-resistant cells through NF-kappaB-TNFalpha-PIK3CA loop. J Exp Clin Cancer Res 36:164. https://doi.org/10.1186/s13046-017-0636-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Tao K, He M, Tao F, Xu G, Ye M, Zheng Y, Li Y (2018) Development of NKG2D-based chimeric antigen receptor-T cells for gastric cancer treatment. Cancer Chemother Pharmacol 82:815–827. https://doi.org/10.1007/s00280-018-3670-0
CAS
Article
PubMed
Google Scholar