Skip to main content

Advertisement

Log in

The liposome of trehalose dimycolate extracted from M. bovis BCG induces antitumor immunity via the activation of dendritic cells and CD8+ T cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Intravesical Bovis bacillus Calmette-Guérin (BCG) therapy is the most effective immunotherapy for bladder cancer, but it sometime causes serious side effects because of its inclusion of live bacteria. It is necessary to develop a more active but less toxic immunotherapeutic agent. Trehalose 6,6′-dimycolate (TDM), the most abundant hydrophobic glycolipid of the BCG cell wall, has been reported to show various immunostimulatory activities such as granulomagenesis and adjuvant activity. Here, we developed cationic liposomes incorporating TDM purified from Mycobacterium bovis BCG Connaught, and we investigated the antitumor effect of the cationic liposome TDM (Lip-TDM). Lip-TDM exerted an antitumor effect in bladder cancer, colon cancer, and melanoma-bearing mouse models that was comparable or even superior to that of BCG, with no body weight loss or granuloma formation. The antitumor effect of Lip-TDM disappeared in two types of mice: those with depletion of CD8+ T cells, and those with knockout of macrophage-inducible C-type lectin (Mincle) which recognize TDM. Lip-TDM treatment enhanced the maturation and migration of dendritic cells in the tumor microenvironment in a Mincle-dependent manner. Our results elucidate mechanisms that underlie Lip-TDM treatment and suggest that Lip-TDM has potential as a safe and effective treatment for various cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morales A, Eidinger D, Bruce AW (1976) Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 116(2):180–183. https://doi.org/10.1016/s0022-5347(17)58737-6

    Article  CAS  PubMed  Google Scholar 

  2. Mathe G, Amiel JL, Schwarzenberg L, Schneider M, Cattan A, Schlumberger JR, Hayat M, De Vassal F (1969) Active immunotherapy for acute lymphoblastic leukaemia. Lancet 1(7597):697–699. https://doi.org/10.1016/s0140-6736(69)92648-8

    Article  CAS  PubMed  Google Scholar 

  3. Morton DL, Eilber FR, Holmes EC, Hunt JS, Ketcham AS, Silverstein MJ, Sparks FC (1974) BCG immunotherapy of malignant melanoma: summary of a seven-year experience. Ann Surg 180(4):635–643. https://doi.org/10.1097/00000658-197410000-00029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shelley MD, Mason MD, Kynaston H (2010) Intravesical therapy for superficial bladder cancer: a systematic review of randomised trials and meta-analyses. Cancer Treat Rev 36(3):195–205. https://doi.org/10.1016/j.ctrv.2009.12.005

    Article  PubMed  Google Scholar 

  5. Redelman-Sidi G, Glickman MS, Bochner BH (2014) The mechanism of action of BCG therapy for bladder cancer–a current perspective. Nat Rev Urol 11(3):153–162. https://doi.org/10.1038/nrurol.2014.15

    Article  CAS  PubMed  Google Scholar 

  6. Noll H, Bloch H, Asselineau J, Lederer E (1956) The chemical structure of the cord factor of Mycobacterium tuberculosis. Biochim Biophys Acta 20(2):299–309. https://doi.org/10.1016/0006-3002(56)90289-x

    Article  CAS  PubMed  Google Scholar 

  7. Bekierkunst A, Yarkoni E (1973) Granulomatous hypersensitivity to trehalose-6,6’-dimycolate (cord factor) in mice infected with BCG. Infect Immun 7(4):631–638

    Article  CAS  Google Scholar 

  8. Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206(13):2879–2888. https://doi.org/10.1084/jem.20091750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyake Y, Toyonaga K, Mori D, Kakuta S, Hoshino Y, Oyamada A, Yamada H, Ono K, Suyama M, Iwakura Y, Yoshikai Y, Yamasaki S (2013) C-type lectin MCL is an FcRgamma-coupled receptor that mediates the adjuvanticity of mycobacterial cord factor. Immunity 38(5):1050–1062. https://doi.org/10.1016/j.immuni.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  10. Ribi EE, Granger DL, Milner KC, Strain SM (1975) Tumor regression caused by endotoxins and mycobacterial fractions. J Natl Cancer Inst 55(5):1253–1257. https://doi.org/10.1093/jnci/55.5.1253

    Article  CAS  PubMed  Google Scholar 

  11. Yarkoni E, Goren MB, Rapp HJ (1979) Effect of sulfolipid I on trehalose-6,6’-dimycolate (cord factor) toxicity and antitumor activity. Infect Immun 24(2):586–588

    Article  CAS  Google Scholar 

  12. Natsuhara Y, Oka S, Kaneda K, Kato Y, Yano I (1990) Parallel antitumor, granuloma-forming and tumor-necrosis-factor-priming activities of mycoloyl glycolipids from Nocardia rubra that differ in carbohydrate moiety: structure-activity relationships. Cancer Immunol Immunother 31(2):99–106. https://doi.org/10.1007/bf01742373

    Article  CAS  PubMed  Google Scholar 

  13. Omri A, Suntres ZE, Shek PN (2002) Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection. Biochem Pharmacol 64(9):1407–1413. https://doi.org/10.1016/s0006-2952(02)01346-1

    Article  CAS  PubMed  Google Scholar 

  14. Schiffelers RM, Storm G, Bakker-Woudenberg IA (2001) Host factors influencing the preferential localization of sterically stabilized liposomes in Klebsiella pneumoniae-infected rat lung tissue. Pharm Res 18(6):780–787. https://doi.org/10.1023/a:1011080211226

    Article  CAS  PubMed  Google Scholar 

  15. Stano P, Bufali S, Pisano C, Bucci F, Barbarino M, Santaniello M, Carminati P, Luisi PL (2004) Novel camptothecin analogue (gimatecan)-containing liposomes prepared by the ethanol injection method. J Liposome Res 14(1–2):87–109. https://doi.org/10.1081/lpr-120039794

    Article  CAS  PubMed  Google Scholar 

  16. Yoshino T, Miyazaki J, Kojima T, Kandori S, Shiga M, Kawahara T, Kimura T, Naka T, Kiyohara H, Watanabe M, Yamasaki S, Akaza H, Yano I, Nishiyama H (2019) Cationized liposomal keto-mycolic acids isolated from Mycobacterium bovis bacillus Calmette-Guerin induce antitumor immunity in a syngeneic murine bladder cancer model. PLoS ONE 14(1):e0209196. https://doi.org/10.1371/journal.pone.0209196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M, Tateno H, Uno J, Hirabayashi J, Mikami Y, Takeda K, Akira S, Saito T (2009) C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci U S A 106(6):1897–1902. https://doi.org/10.1073/pnas.0805177106

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vandeveer AJ, Fallon JK, Tighe R, Sabzevari H, Schlom J, Greiner JW (2016) Systemic Immunotherapy of Non-Muscle Invasive Mouse Bladder Cancer with Avelumab, an Anti-PD-L1 Immune Checkpoint Inhibitor. Cancer Immunol Res 4(5):452–462. https://doi.org/10.1158/2326-6066.CIR-15-0176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamagami H, Matsumoto T, Fujiwara N, Arakawa T, Kaneda K, Yano I, Kobayashi K (2001) Trehalose 6,6’-dimycolate (cord factor) of Mycobacterium tuberculosis induces foreign-body- and hypersensitivity-type granulomas in mice. Infect Immun 69(2):810–815. https://doi.org/10.1128/IAI.69.2.810-815.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura Y, Sato E, Fukuoka S, Tada Y, Tanaka A, Morikawa H, Kawazoe A, Kinoshita T, Shitara K, Sakaguchi S, Nishikawa H (2019) PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A 116(20):9999–10008. https://doi.org/10.1073/pnas.1822001116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fujita Y, Naka T, McNeil MR, Yano I (2005) Intact molecular characterization of cord factor (trehalose 6,6’-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151(Pt 10):3403–3416. https://doi.org/10.1099/mic.0.28158-0

    Article  CAS  PubMed  Google Scholar 

  22. Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE, Wolf DM, Kaisho T, Bogunovic D, Bhardwaj N, Krummel MF (2016) Critical Role for CD103(+)/CD141(+) Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. Cancer Cell 30(2):324–336. https://doi.org/10.1016/j.ccell.2016.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bottcher JP, Reis ESC (2018) The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends Cancer 4(11):784–792. https://doi.org/10.1016/j.trecan.2018.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang D, Gu X, Liu X, Wei S, Wang B, Fang M (2018) NK cells inhibit anti-Mycobacterium bovis BCG T cell responses and aggravate pulmonary inflammation in a direct lung infection mouse model. Cell Microbiol 20(7):e12833. https://doi.org/10.1111/cmi.12833

    Article  CAS  PubMed  Google Scholar 

  25. Bekierkunst A, Levij IS, Yarkoni E, Vilkas E, Adam A, Lederer E (1969) Granuloma formation induced in mice by chemically defined mycobacterial fractions. J Bacteriol 100(1):95–102

    Article  CAS  Google Scholar 

  26. Fujita Y, Okamoto Y, Uenishi Y, Sunagawa M, Uchiyama T, Yano I (2007) Molecular and supra-molecular structure related differences in toxicity and granulomatogenic activity of mycobacterial cord factor in mice. Microb Pathog 43(1):10–21. https://doi.org/10.1016/j.micpath.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  27. Hunter RL, Olsen MR, Jagannath C, Actor JK (2006) Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci 36(4):371–386

    CAS  PubMed  Google Scholar 

  28. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102. https://doi.org/10.1186/1556-276X-8-102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kremenovic M, Schenk M, Lee DJ (2020) Clinical and molecular insights into BCG immunotherapy for melanoma. J Intern Med. https://doi.org/10.1111/joim.13037

    Article  PubMed  Google Scholar 

  30. Shibata H, Izutsu K, Yomota C, Okuda H, Goda Y (2015) Investigation of factors affecting in vitro doxorubicin release from PEGylated liposomal doxorubicin for the development of in vitro release testing conditions. Drug Dev Ind Pharm 41(8):1376–1386. https://doi.org/10.3109/03639045.2014.954582

    Article  CAS  PubMed  Google Scholar 

  31. Numata F, Nishimura K, Ishida H, Ukei S, Tone Y, Ishihara C, Saiki I, Sekikawa I, Azuma I (1985) Lethal and adjuvant activities of cord factor (trehalose-6,6’-dimycolate) and synthetic analogs in mice. Chem Pharm Bull (Tokyo) 33(10):4544–4555. https://doi.org/10.1248/cpb.33.4544

    Article  CAS  Google Scholar 

  32. Sakurai T, Saiki I, Ishida H, Takeda K, Azuma I (1989) Lethal toxicity and adjuvant activities of synthetic TDM and its related compounds in mice. Vaccine 7(3):269–274. https://doi.org/10.1016/0264-410x(89)90242-9

    Article  CAS  PubMed  Google Scholar 

  33. Werninghaus K, Babiak A, Gross O, Holscher C, Dietrich H, Agger EM, Mages J, Mocsai A, Schoenen H, Finger K, Nimmerjahn F, Brown GD, Kirschning C, Heit A, Andersen P, Wagner H, Ruland J, Lang R (2009) Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation. J Exp Med 206(1):89–97. https://doi.org/10.1084/jem.20081445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Richardson MB, Williams SJ (2014) MCL and Mincle: C-Type Lectin Receptors That Sense Damaged Self and Pathogen-Associated Molecular Patterns. Front Immunol 5:288. https://doi.org/10.3389/fimmu.2014.00288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:73. https://doi.org/10.1186/s12916-016-0623-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Y (2015) Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 125(9):3335–3337. https://doi.org/10.1172/JCI83871

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yu JW, Bhattacharya S, Yanamandra N, Kilian D, Shi H, Yadavilli S, Katlinskaya Y, Kaczynski H, Conner M, Benson W, Hahn A, Seestaller-Wehr L, Bi M, Vitali NJ, Tsvetkov L, Halsey W, Hughes A, Traini C, Zhou H, Jing J, Lee T, Figueroa DJ, Brett S, Hopson CB, Smothers JF, Hoos A, Srinivasan R (2018) Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments. PLoS ONE 13(11):e0206223. https://doi.org/10.1371/journal.pone.0206223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581. https://doi.org/10.1038/nature13988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Homet Moreno B, Zaretsky JM, Garcia-Diaz A, Tsoi J, Parisi G, Robert L, Meeth K, Ndoye A, Bosenberg M, Weeraratna AT, Graeber TG, Comin-Anduix B, Hu-Lieskovan S, Ribas A (2016) Response to Programmed Cell Death-1 Blockade in a Murine Melanoma Syngeneic Model Requires Costimulation, CD4, and CD8 T Cells. Cancer Immunol Res 4(10):845–857. https://doi.org/10.1158/2326-6066.CIR-16-0060

    Article  CAS  PubMed  Google Scholar 

  40. Babjuk M, Burger M, Comperat EM, Gontero P, Mostafid AH, Palou J, van Rhijn BWG, Roupret M, Shariat SF, Sylvester R, Zigeuner R, Capoun O, Cohen D, Escrig JLD, Hernandez V, Peyronnet B, Seisen T, Soukup V (2019) European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and Carcinoma In Situ)—2019 Update. Eur Urol 76(5):639–657. https://doi.org/10.1016/j.eururo.2019.08.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Japan Society for the Promotion of Science KAKENHI, no. 18H02934.

Author information

Authors and Affiliations

Authors

Contributions

JM, HNi, and IY contributed to the study's conception and design. MS, KT, YN, TY, RT, MiW, HK, and MaW performed the experiments. MS, YN, SK, HNe, and TK contributed to the analysis and interpretation of the data. NO, YF, SY, TS, and HT contributed administrative, technical, or material support. MS wrote the first draft of the manuscript. YN, SK, HNe, NO, YF, MiW, and SY critically reviewed and revised the manuscript. JM, TK, HNi, and IY supervised the study. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jun Miyazaki.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

All animal care and experimental procedures were performed in accordance with national and regional legislation on animal protection, and all animal procedures were consistent with the University of Tsukuba's Regulation of Animal Experiments and were approved by the Animal Experiment Committee, University of Tsukuba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiga, M., Miyazaki, J., Tanuma, K. et al. The liposome of trehalose dimycolate extracted from M. bovis BCG induces antitumor immunity via the activation of dendritic cells and CD8+ T cells. Cancer Immunol Immunother 70, 2529–2543 (2021). https://doi.org/10.1007/s00262-021-02870-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02870-2

Keywords

Navigation