Skip to main content

PD-1/PD-L1 checkpoint inhibitors in combination with olaparib display antitumor activity in ovarian cancer patient-derived three-dimensional spheroid cultures

Abstract

Immune checkpoint inhibitors (ICIs) that target programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have shown modest activity as monotherapies for the treatment of ovarian cancer (OC). The rationale for using these therapies in combination with poly (ADP-ribose) polymerase inhibitors (PARP-Is) has been described, and their in vivo application will benefit from ex vivo platforms that aid in the prediction of patient response or resistance to therapy. This study examined the effectiveness of detecting patient-specific immune-related activity in OC using three-dimensional (3D) spheroids. Immune-related cell composition and PD-1/PD-L1 expression status were evaluated using cells dissociated from fresh OC tissue from two patients prior to and following 3D culture. The patient sample with the greatest increase in the proportion of PD-L1 + cells also possessed more activated cytotoxic T cells and mature DCs compared to the other patient sample. Upon cytokine stimulation, patient samples demonstrated increases in cytotoxic T cell activation and DC major histocompatibility complex (MHC) class-II expression. Pembrolizumab increased cytokine secretion, enhanced olaparib cytotoxicity, and reduced spheroid viability in a T cell-dependent manner. Furthermore, durvalumab and olaparib combination treatment increased cell death in a synergistic manner. This work demonstrates that immune cell activity and functional modulation can be accurately detected using our ex vivo 3D spheroid platform, and it presents evidence for their utility to demonstrate sensitivity to ICIs alone or in combination with PARP-Is in a preclinical setting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

3D:

Three-dimensional

BRCA1/2:

Breast-related cancer antigens 1 and 2

DC:

Dendritic cells

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

ICI:

Immune checkpoint inhibitor

IRB:

Institutional Review Board

IFNγ:

Interferon gamma

IL-2:

Interleukin-2; IL-10: Interleukin-10

IL-10:

IFNγ-induced protein 10

MIP-1α:

Macrophage inflammatory protein

MHC:

Major histocompatibility complex

MHC-II:

Major histocompatibility complex class-II

OC:

Ovarian cancer

PBMCs:

Peripheral blood mononuclueated cells

PARP-I:

Poly (ADP-ribose) polymerase inhibitors

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed death-ligand 1

RLUs:

Relative luminescence units

SD:

Standard deviation

T cell CM:

T cell expansion media

TILs:

Tumor-infiltrating lymphocytes

TIME:

Tumor immune microenvironment

TNFα:

Tumor necrosis factor alpha

Tregs:

Regulatory T cells

VC:

Vehicle control

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30

    PubMed  Google Scholar 

  2. Pantelidou C, Sonzogni O, De Oliveria TM, Mehta AK, Kothari A, Wang D et al (2019) PARP inhibitor efficacy depends on CD8(+) T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov 9(6):722–737

    PubMed  PubMed Central  Google Scholar 

  3. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213

    CAS  PubMed  Google Scholar 

  4. Zhang G, Liu C, Bai H, Cao G, Cui R, Zhang Z (2019) Combinatorial therapy of immune checkpoint and cancer pathways provides a novel perspective on ovarian cancer treatment. Oncol Lett 17(3):2583–2591

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ghisoni E, Imbimbo M, Zimmermann S, Valabrega G (2019) Ovarian cancer immunotherapy: turning up the heat. Int J Mol Sci. 20(12):2927

    CAS  PubMed Central  Google Scholar 

  6. Matulonis UA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S, Vergote I et al (2019) Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study. Ann Oncol 30(7):1080–1087

    CAS  PubMed  Google Scholar 

  7. Shuford S, Wilhelm C, Rayner M, Elrod A, Millard M, Mattingly C et al (2019) Prospective validation of an Ex Vivo, patient-derived 3d spheroid model for response predictions in newly diagnosed ovarian cancer. Scientific Reports 9(1):11153

    PubMed  PubMed Central  Google Scholar 

  8. Wang Z, Sun K, Xiao Y, Feng B, Mikule K, Ma X et al (2019) Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci Rep 9(1):1853

    PubMed  PubMed Central  Google Scholar 

  9. Konstantinopoulos PA, Waggoner S, Vidal GA, Mita M, Moroney JW, Holloway R et al (2019) Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol 5(8):1141–1149

    PubMed Central  PubMed  Google Scholar 

  10. Farkkila A, Gulhan DC, Casado J, Jacobson CA, Nguyen H, Kochupurakkal B et al (2020) Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat Commun 11(1):1459

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Boussios S, Karihtala P, Moschetta M, Karathanasi A, Sadauskaite A, Rassy E et al (2019) Combined Strategies with Poly (ADP-Ribose) Polymerase (PARP) Inhibitors for the treatment of ovarian cancer: a literature review. Diagnostics (Basel) 9(3):87

    CAS  Google Scholar 

  12. Jiang X, Li X, Li W, Bai H, Zhang Z (2019) PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms. J Cell Mol Med 23(4):2303–2313

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ding L, Kim HJ, Wang Q, Kearns M, Jiang T, Ohlson CE et al (2018) PARP inhibition elicits sting-dependent antitumor immunity in brca1-deficient ovarian cancer. Cell Rep. 25(11):2972–2980

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zimmer AS, Nichols E, Cimino-Mathews A, Peer C, Cao L, Lee MJ et al (2019) A phase I study of the PD-L1 inhibitor, durvalumab, in combination with a PARP inhibitor, olaparib, and a VEGFR1-3 inhibitor, cediranib, in recurrent women’s cancers with biomarker analyses. J Immunother Cancer 7(1):197

    PubMed  PubMed Central  Google Scholar 

  15. Shuford S, Wilhelm C, Rayner M, Elrod A, Millard M, Mattingly C et al (2019) Prospective validation of an ex vivo, patient-derived 3d spheroid model for response predictions in newly diagnosed ovarian cancer. Sci Rep 9(1):11153

    PubMed  PubMed Central  Google Scholar 

  16. Riedl A, Schlederer M, Pudelko K, Stadler M, Walter S, Unterleuthner D et al (2017) Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses. J Cell Sci 130(1):203–218

    CAS  PubMed  Google Scholar 

  17. Kapalczynska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A, Filas V et al (2018) 2D and 3D cell cultures-a comparison of different types of cancer cell cultures. Arch Med Sci 14(4):910–919

    PubMed  Google Scholar 

  18. Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM et al (2016) Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32(18):2866–2868

    PubMed  PubMed Central  Google Scholar 

  19. Ingulli E, Mondino A, Khoruts A, Jenkins MK (1997) In vivo detection of dendritic cell antigen presentation to CD4(+) T cells. J Exp Med 185(12):2133–2141

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Norbury CC, Malide D, Gibbs JS, Bennink JR, Yewdell JW (2002) Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nat Immunol 3(3):265–271

    CAS  PubMed  Google Scholar 

  21. Mayoux M, Roller A, Pulko V, Sammicheli S, Chen S, Sum E et al (2020) Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci Transl Med 12(534):eaav7431

    CAS  PubMed  Google Scholar 

  22. Versteven M, Van den Bergh JMJ, Marcq E, Smits ELJ, Van Tendeloo VFI, Hobo W et al (2018) Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Front Immunol 9:394

    PubMed  PubMed Central  Google Scholar 

  23. Flies DB, Higuchi T, Harris JC, Jha V, Gimotty PA, Adams SF (2016) Immune checkpoint blockade reveals the stimulatory capacity of tumor-associated CD103(+) dendritic cells in late-stage ovarian cancer. Oncoimmunology 5(8):e1185583

    PubMed  PubMed Central  Google Scholar 

  24. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ et al (2014) Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26(6):938

    CAS  PubMed  Google Scholar 

  25. Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S et al (2016) Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44(4):924–938

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dennis KL, Blatner NR, Gounari F, Khazaie K (2013) Current status of interleukin-10 and regulatory T-cells in cancer. Curr Opin Oncol 25(6):637–645

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi Y, Liu CH, Roberts AI, Das J, Xu G, Ren G et al (2006) Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res 16(2):126–133

    CAS  PubMed  Google Scholar 

  28. Parameswaran N, Patial S (2010) Tumor necrosis factor-alpha signaling in macrophages. Crit Rev Eukaryot Gene Expr 20(2):87–103

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maurer M, von Stebut E (2004) Macrophage inflammatory protein-1. Int J Biochem Cell Biol 36(10):1882–1886

    CAS  PubMed  Google Scholar 

  30. Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC (2012) Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A 109(5):1607–1612

    CAS  PubMed  Google Scholar 

  31. Ahamadi M, Freshwater T, Prohn M, Li CH, de Alwis DP, de Greef R et al (2017) Model-based characterization of the pharmacokinetics of pembrolizumab: a humanized anti-pd-1 monoclonal antibody in advanced solid tumors. CPT Pharmacometrics Syst Pharmacol 6(1):49–57

    CAS  PubMed  Google Scholar 

  32. Lee JM, Cimino-Mathews A, Peer CJ, Zimmer A, Lipkowitz S, Annunziata CM et al (2017) Safety and clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with poly (ADP-Ribose) polymerase inhibitor olaparib or vascular endothelial growth factor receptor 1–3 inhibitor cediranib in women’s cancers: a dose-escalation. Phase I Study J Clin Oncol 35(19):2193–2202

    CAS  PubMed  Google Scholar 

  33. Baverel PG, Dubois VFS, Jin CY, Zheng Y, Song X, Jin X et al (2018) Population pharmacokinetics of durvalumab in cancer patients and association with longitudinal biomarkers of disease status. Clin Pharmacol Ther 103(4):631–642

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Merlano MC, Abbona A, Denaro N, Garrone O (2019) Knowing the tumour microenvironment to optimise immunotherapy. Acta Otorhinolaryngol Ital 39(1):2–8

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24(5):541–550

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Filipovic A, Miller G, Bolen J (2020) Progress toward identifying exact proxies for predicting response to immunotherapies. Front Cell Dev Biol 8:155

    PubMed  PubMed Central  Google Scholar 

  37. Cai DL, Jin LP (2017) Immune cell population in ovarian tumor microenvironment. J Cancer 8(15):2915–2923

    PubMed  PubMed Central  Google Scholar 

  38. Heong V, Ngoi N, Tan DS (2017) Update on immune checkpoint inhibitors in gynecological cancers. J Gynecol Oncol 28(2):e20

    PubMed  Google Scholar 

  39. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Maleki VS (2018) High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunother Cancer 6(1):157

    Google Scholar 

  41. Varga A, Piha-Paul S, Ott PA, Mehnert JM, Berton-Rigaud D, Morosky A et al (2019) Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: analysis of KEYNOTE-028. Gynecol Oncol 152(2):243–250

    CAS  PubMed  Google Scholar 

  42. Turner N, Tutt A, Ashworth A (2004) Hallmarks of “BRCAness” in sporadic cancers. Nat Rev Cancer 4(10):814–819

    CAS  PubMed  Google Scholar 

  43. Jiang X, Li W, Li X, Bai H, Zhang Z (2019) Current status and future prospects of PARP inhibitor clinical trials in ovarian cancer. Cancer Manag Res 11:4371–4390

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Di Modugno F, Colosi C, Trono P, Antonacci G, Ruocco G, Nistico P (2019) 3D models in the new era of immune oncology: focus on T cells, CAF and ECM. J Exp Clin Cancer Res 38(1):117

    PubMed  PubMed Central  Google Scholar 

  45. Schnell A, Schmidl C, Herr W, Siska PJ (2018) The peripheral and intratumoral immune cell landscape in cancer patients: a proxy for tumor biology and a tool for outcome prediction. Biomedicines. 6(1):25

    PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients for their participation in this study. We would also like to extend our appreciation to the ITOR Biorepository at Prisma Health for their support.

Funding

All work for this study was funded by KIYATEC, Inc.

Author information

Authors and Affiliations

Authors

Contributions

KMA designed the study, performed the experiments and data analysis, and wrote the manuscript; AKE performed the experiments, and wrote the manuscript; KL performed flow cytometry and immunofluorescence for cytokine stimulation experiments, and provided experimental design assistance; SS provided experimental design assistance and data review; LMH provided facilities/logistics for experimental performance; TMD directed the project, provided data review, and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Teresa M. DesRochers.

Ethics declarations

Conflict of interest

Dr. Appleton, Ms. Elrod, Ms. Lassahn, Mr. Shuford, Ms. Holmes, and Dr. DesRochers are current employees of KIYATEC, Inc.

Ethical approval

Written informed consent was obtained from patients in accordance with the Institutional Review Board (IRB)-approved biology protocols by Prisma Health, formally known as Greenville Health System, Cancer Institute (IRB-Committee C).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 746kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Appleton, K.M., Elrod, A.K., Lassahn, K.A. et al. PD-1/PD-L1 checkpoint inhibitors in combination with olaparib display antitumor activity in ovarian cancer patient-derived three-dimensional spheroid cultures. Cancer Immunol Immunother 70, 843–856 (2021). https://doi.org/10.1007/s00262-021-02849-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02849-z

Keywords

  • Immune checkpoint inhibitors
  • PARP inhibitors
  • Ovarian cancer
  • Spheroid
  • 3D cultures