Skip to main content

Immuno-PET imaging of 68Ga-labeled nanobody Nb109 for dynamic monitoring the PD-L1 expression in cancers


The checkpoint blockade immunotherapy has become a potent treatment strategy for cancers, and programmed death ligand-1 (PD-L1) is a prominent checkpoint ligand that is highly expressed in some cancers. The identification of immune checkpoint marker PD-L1 is critical for improving the success of immunotherapy. Accordingly, the binding specificity and dynamic monitoring property of a non-blocking nanobody tracer 68Ga-NOTA-Nb109 to PD-L1 were assessed in this study. The endogenous expression level of PD-L1 in several cancer cells was measured by flow cytometry, Western blot, and cellular uptake assay. Sensitivity and specificity of 68Ga-NOTA-Nb109 in monitoring the expression of PD-L1 in vivo were evaluated by PET imaging of different tumor-bearing models (U87, high PD-L1 expression; HCT 116, medium PD-L1 expression; and NCI-H1299, low PD-L1 expression). In vivo PET imaging results agreed well with those detected in vitro. In addition, PET imaging of PD-L1 expression in U87 and NCI-H1299 xenografts using 18F-FDG was also performed for comparison. The maximum tumor-to-muscle uptake ratio of 68Ga-NOTA-Nb109 was more than twofold that of 18F-FDG in U87 xenograft. The change of PD-L1 expression in NCI-H1299 cells and xenografts induced by cisplatin (CDDP) was sensitively monitored by 68Ga-NOTA-Nb109. This study demonstrated the feasibility of tracer 68Ga-NOTA-Nb109 for specifically targeting endogenous PD-L1 and dynamic monitoring the change of PD-L1 expression, and could guide the immunotherapy and immunochemotherapy for refractory cancers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8







Monoclonal antibodies


Non-small cell lung cancer


Programmed death protein 1


Programmed death ligand-1


Region of interest


  1. 1.

    Dal Bello MG, Alama A, Coco S, Vanni I, Grossi F (2017) Understanding the checkpoint blockade in lung cancer immunotherapy. Drug Discov Today. 22(8):1266–1273.

    CAS  Article  Google Scholar 

  2. 2.

    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Hira R, Francisco S-V, Konnor L, Walid C, Philip J, Darragh H et al (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36(7):633–641.

    Article  Google Scholar 

  4. 4.

    Ferrara R, Mezquita L, Texier M, Lahmar J, Audigier-Valette C, Tessonnier L et al (2018) Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 4(11):1543–1552.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Bellmunt J, Powles T, Vogelzang NJ (2017) A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: the future is now. Cancer Treat Rev 54:58–67.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Jung HI, Jeong D, Ji S, Ahn TS, Bae SH, Chin S et al (2017) Overexpression of PD-L1 and PD-L2 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res Treat. 49(1):246–254.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Rezaeeyan H, Hassani SN, Barati M, Shahjahani M, Saki N (2017) PD-1/PD-L1 as a prognostic factor in leukemia. J Hematopathol. 10(1):17–24.

    Article  Google Scholar 

  8. 8.

    Postow MA, Callahan MK, Wolchok JD (2015) Immune Checkpoint Blockade in Cancer Therapy. J Clin Oncol 33(17):1974–1982.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Cheng M, Durm G, Hanna N, Einhorn LH, Kong FS (2017) Can radiotherapy potentiate the effectiveness of immune checkpoint inhibitors in lung cancer? Future Oncol. 13(28):2503–2505.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X (2015) Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 21(1):24–33.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17(12):e542–e551.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Wang X, Teng F, Kong L, Yu J (2016) PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther. 9:5023–5039.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Aguiar PN, Andrade DMR, Peter H, Hakaru T, Gilberto DL (2017) PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: updated survival data. Immunotherapy. 9(6):499–506

    CAS  Article  Google Scholar 

  14. 14.

    Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Rehman JA, Han G, Carvajal-Hausdorf DE, Wasserman BE, Pelekanou V, Mani NL et al (2017) Quantitative and pathologist-read comparison of the heterogeneity of programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer. Mod Pathol 30(3):340–349.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K et al (2017) PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 12(2):208–222.

    Article  PubMed  Google Scholar 

  17. 17.

    Patel SP, Kurzrock R (2015) PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther 14(4):847–856.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Lesniak WG, Chatterjee S, Gabrielson M, Lisok A, Wharram B, Pomper MG et al (2016) PD-L1 detection in tumors using [(64)Cu]Atezolizumab with PET. Bioconjug Chem 27(9):2103–2110.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC et al (2018) (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 24(12):1852–1858.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Lv G, Sun X, Qiu L, Sun Y, Li K, Liu Q et al (2020) PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody. J Nucl Med 61(1):117–122.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Inman BA, Longo TA, Ramalingam S, Harrison MR (2017) Atezolizumab: a PD-L1-blocking antibody for bladder cancer. Clin Cancer Res 23(8):1886–1890.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Seetharamu N, Preeshagul IR, Sullivan KM (2017) New PD-L1 inhibitors in non-small cell lung cancer-impact of atezolizumab. Lung Cancer 8:67–78.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Vento J, Mulgaonkar A, Woolford L, Nham K, Christie A, Bagrodia A et al (2019) PD-L1 detection using (89)Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. J Immunother Cancer. 7(1):144.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    De Silva RA, Kumar D, Lisok A, Chatterjee S, Wharram B, Venkateswara Rao K et al (2018) Peptide-based (68)Ga-PET radiotracer for imaging PD-L1 expression in cancer. Mol Pharm 15(9):3946–3952.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kumar D, Lisok A, Dahmane E, McCoy M, Shelake S, Chatterjee S et al (2019) Peptide-based PET quantifies target engagement of PD-L1 therapeutics. J Clin Invest. 129(2):616–630.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hu K, Kuan H, Hanyu M, Masayuki H, Xie L, Zhang Y et al (2019) Developing native peptide-based radiotracers for PD-L1 PET imaging and improving imaging contrast by pegylation. Chem Commun 55(29):4162–4165.

    CAS  Article  Google Scholar 

  27. 27.

    Pilotto S, Molina-Vila MA, Karachaliou N, Carbognin L, Viteri S, Gonzalez-Cao M et al (2015) Integrating the molecular background of targeted therapy and immunotherapy in lung cancer: a way to explore the impact of mutational landscape on tumor immunogenicity. Transl Lung Cancer Res. 4(6):721–727.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ehlerding EB, Lee HJ, Barnhart TE, Jiang D, Kang L, McNeel DG et al (2019) Noninvasive imaging and quantification of radiotherapy-induced PD-L1 upregulation with (89)Zr-Df-Atezolizumab. Bioconjug Chem 30(5):1434–1441.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Mok TSK, Wu Y-L, Kudaba I, Kowalski DM, Cho BC, Turna HZ et al (2019) Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 393(10183):1819–1830.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A et al (2019) Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol 37(7):537–546

    CAS  Article  Google Scholar 

  31. 31.

    Yan F, Pang J, Peng Y, Molina JR, Yang P, Liu S (2016) Elevated cellular PD1/PD-L1 expression confers acquired resistance to cisplatin in small cell lung cancer cells. PLoS ONE 11(9):e0162925.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wangpaichitr M, Kandemir H, Li YY, Wu C, Nguyen D, Feun LG et al (2017) Relationship of Metabolic Alterations and PD-L1 Expression in Cisplatin Resistant Lung Cancer. Cell Dev Biol. 6(2):183.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Fournel L, Wu Z, Stadler N, Damotte D, Lococo F, Boulle G et al (2019) Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett 464:5–14.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Chen R, Zhou X, Liu J, Huang G (2019) Relationship between the expression of PD-1/PD-L1 and (18)F-FDG uptake in bladder cancer. Eur J Nucl Med Mol Imaging. 46(4):848–854.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Jreige M, Letovanec I, Chaba K, Renaud S, Rusakiewicz S, Cristina V et al (2019) (18)F-FDG PET metabolic-to-morphological volume ratio predicts PD-L1 tumour expression and response to PD-1 blockade in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 46(9):1859–1868.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Ehlerding EB, Lan X, Cai W (2019) Predicting PD-1/PD-L1 status in bladder cancer with (18)F-FDG PET? Eur J Nucl Med Mol Imaging. 46(4):791–793.

    Article  PubMed  Google Scholar 

  37. 37.

    Wang X, Huang S, Zhang Y, Zhu L, Wu X (2018) The application and mechanism of PD pathway blockade for cancer therapy. Postgrad Med J 94(1107):53–60.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Chen L, Han X (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 125(9):3384–3391.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Constantinidou A, Alifieris C, Trafalis DT (2019) Targeting programmed cell death -1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol Ther 194:84–106.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Wang PF, Chen Y, Song SY, Wang TJ, Ji WJ, Li SW et al (2017) Immune-Related Adverse Events Associated with Anti-PD-1/PD-L1 Treatment for Malignancies: a Meta-Analysis. Front Pharmacol. 8:730.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Guo D, Li M, Chen D, Jing W, Zhu H, Fu L et al (2019) Neutrophil-to-lymphocyte ratio is superior to platelet-to-lymphocyte ratio as a prognostic predictor in advanced non-small-cell lung cancer treated with first-line platinum-based chemotherapy. Future Oncol. 15(6):625–635

    CAS  Article  PubMed Central  Google Scholar 

  42. 42.

    Takada K, Toyokawa G, Okamoto T, Baba S, Kozuma Y, Matsubara T et al (2017) Metabolic characteristics of programmed cell death-ligand 1-expressing lung cancer on (18) F-fluorodeoxyglucose positron emission tomography/computed tomography. Cancer Med 6(11):2552–2561.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


The nanobody of NOTA-Nb109 was kindly provided by Suzhou Smart Nuclide Biopharmaceutical Co., Ltd, China.


This work was funded by the National Natural Science Foundation of China (81972906, 81971645, and 22076069), Natural Science Foundation of Jiangsu Province (BK20181128 and BK20201135), Key Youth Medical Talent Project of Jiangsu Province (QNRC2016626 and QNRC2016629), Jiangsu Commission of Health (ZDA2020007 and M2020028), Precision Medical Project of Wuxi Commission of Health and Family Planning (J201806), Major Scientific Research Project of Wuxi Commission of Health (Z201913), and Innovation Capacity Development Plan of Jiangsu Province (BM2018023).

Author information




QL and LJ performed the experiments, acquired and analyzed the data. QL wrote the paper, and LJ contributed to paper writing. KL and GL contributed to the PET imaging, and analyzed data for in vivo experiments. HL performed the probe labeling and quality control. JL and LQ conceived, designed, and supported the study, interpreted the results and revised the manuscript.

Corresponding authors

Correspondence to Jianguo Lin or Ling Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All animal procedures were performed according to the protocols approved by the ethical committee of Jiangsu Institute of Nuclear Medicine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Jiang, L., Li, K. et al. Immuno-PET imaging of 68Ga-labeled nanobody Nb109 for dynamic monitoring the PD-L1 expression in cancers. Cancer Immunol Immunother 70, 1721–1733 (2021).

Download citation


  • PD-L1
  • PET imaging
  • Nanobody tracer
  • 68Ga
  • 18F-FDG