Skip to main content

Advertisement

Log in

Anti-human CD99 antibody exerts potent antitumor effects in mantle cell lymphoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

CD99 is a surface molecule expressed on various cell types including cancer cells. Expression of CD99 on multiple myeloma is associated with CCND1-IGH fusion/t(11;14). This translocation has been reported to be a genetic hallmark of mantle cell lymphoma (MCL). MCL is characterized by overexpression of cyclin D1 and high tumor proliferation. In this study, high expression of CD99 on MCL cell lines was confirmed. Our generated anti-CD99 monoclonal antibody (mAb), termed MT99/3, exerted potent antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activities against mantle B-cell lymphoma without direct cytotoxic effects. The anti-tumor activities of mAb MT99/3 were more effective in MCL than in other B-cell lymphomas. Moreover, in a mouse xenograft model using Z138 MCL cell line, treatment of mAb MT99/3 reduced tumor development and growth. Our study indicated that mAb MT99/3 is a promising immunotherapeutic candidate for mantle cell lymphoma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCND1:

Cyclin D1

CD:

Cluster of differentiation

FITC:

Fluorescein isothiocyanate

HRP:

Horseradish peroxidase

PE:

Phycoerythrin

References

  1. Aubrit F, Gelin C, Pham D, Raynal B, Bernard A (1989) The biochemical characterization of E2, a T cell surface molecule involved in rosettes. Eur J Immunol 19(8):1431–1436. https://doi.org/10.1002/eji.1830190813

    Article  CAS  PubMed  Google Scholar 

  2. Ambros IM, Ambros PF, Strehl S, Kovar H, Gadner H, Salzer-Kuntschik M (1991) MIC2 is a specific marker for Ewing’s sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 67(7):1886–1893

    Article  CAS  Google Scholar 

  3. Kasinrerk W, Tokrasinwit N, Moonsom S, Stockinger H (2000) CD99 monoclonal antibody induce homotypic adhesion of Jurkat cells through protein tyrosine kinase and protein kinase C-dependent pathway. Immunol Lett 71(1):33–41

    Article  CAS  Google Scholar 

  4. Khunkaewla P, Chiampanichayakul S, Yasamut U, Pata S, Kasinrerk W (2007) Production, characterization, and functional analysis of newly established CD99 monoclonal antibodies MT99/1 and MT99/2. Hybridoma (Larchmt) 26(4):241–250. https://doi.org/10.1089/hyb.2007.0504

    Article  CAS  Google Scholar 

  5. Hahn JH, Kim MK, Choi EY, Kim SH, Sohn HW, Ham DI, Chung DH, Kim TJ, Lee WJ, Park CK, Ree HJ, Park SH (1997) CD99 (MIC2) regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its gene encodes both positive and negative regulators of cellular adhesion. J Immunol 159(5):2250–2258

    CAS  PubMed  Google Scholar 

  6. Alberti I, Bernard G, Rouquette-Jazdanian AK, Pelassy C, Pourtein M, Aussel C, Bernard A (2002) CD99 isoforms expression dictates T cell functional outcomes. FASEB J 16(14):1946–1948. https://doi.org/10.1096/fj.02-0049fje

    Article  CAS  PubMed  Google Scholar 

  7. Byun HJ, Hong IK, Kim E, Jin YJ, Jeoung DI, Hahn JH, Kim YM, Park SH, Lee H (2006) A splice variant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-, ERK-, and JNK-dependent AP-1 activation signaling pathways. J Biol Chem 281(46):34833–34847. https://doi.org/10.1074/jbc.M605483200

    Article  CAS  PubMed  Google Scholar 

  8. Scotlandi K, Zuntini M, Manara MC, Sciandra M, Rocchi A, Benini S, Nicoletti G, Bernard G, Nanni P, Lollini PL, Bernard A, Picci P (2007) CD99 isoforms dictate opposite functions in tumour malignancy and metastases by activating or repressing c-Src kinase activity. Oncogene 26(46):6604–6618. https://doi.org/10.1038/sj.onc.1210481

    Article  CAS  PubMed  Google Scholar 

  9. Pasello M, Manara MC, Scotlandi K (2018) CD99 at the crossroads of physiology and pathology. J Cell Commun Signal 12(1):55–68. https://doi.org/10.1007/s12079-017-0445-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cerisano V, Aalto Y, Perdichizzi S, Bernard G, Manara MC, Benini S, Cenacchi G, Preda P, Lattanzi G, Nagy B, Knuutila S, Colombo MP, Bernard A, Picci P, Scotlandi K (2004) Molecular mechanisms of CD99-induced caspase-independent cell death and cell-cell adhesion in Ewing’s sarcoma cells: actin and zyxin as key intracellular mediators. Oncogene 23(33):5664–5674. https://doi.org/10.1038/sj.onc.1207741

    Article  CAS  PubMed  Google Scholar 

  11. Jung KC, Kim NH, Park WS, Park SH, Bae Y (2003) The CD99 signal enhances Fas-mediated apoptosis in the human leukemic cell line. Jurkat FEBS Lett 554(3):478–484

    Article  CAS  Google Scholar 

  12. Watson RL, Buck J, Levin LR, Winger RC, Wang J, Arase H, Muller WA (2015) Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration. J Exp Med 212(7):1021–1041. https://doi.org/10.1084/jem.20150354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang X, Zhou X, Wang Z, Li F, Liu F, Zhong L, Li X, Han X, Wu Z, Chen S, Zhao T (2012) CD99 triggers upregulation of miR-9-modulated PRDM1/BLIMP1 in Hodgkin/Reed-Sternberg cells and induces redifferentiation. Int J Cancer 131(4):E382-394. https://doi.org/10.1002/ijc.26503

    Article  CAS  PubMed  Google Scholar 

  14. Laopajon W, Pata S, Takheaw N, Surinkaew S, Khummuang S, Kasinrerk W (2019) Triggering of CD99 on monocytes by a specific monoclonal antibody regulates T cell activation. Cell Immunol 335:51–58. https://doi.org/10.1016/j.cellimm.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  15. Waclavicek M, Majdic O, Stulnig T, Berger M, Sunder-Plassmann R, Zlabinger GJ, Baumruker T, Stockl J, Ebner C, Knapp W, Pickl WF (1998) CD99 engagement on human peripheral blood T cells results in TCR/CD3-dependent cellular activation and allows for Th1-restricted cytokine production. J Immunol 161(9):4671–4678

    CAS  PubMed  Google Scholar 

  16. Bremond A, Meynet O, Mahiddine K, Coito S, Tichet M, Scotlandi K, Breittmayer JP, Gounon P, Gleeson PA, Bernard A, Bernard G (2009) Regulation of HLA class I surface expression requires CD99 and p230/golgin-245 interaction. Blood 113(2):347–357. https://doi.org/10.1182/blood-2008-02-137745

    Article  CAS  PubMed  Google Scholar 

  17. Sohn HW, Shin YK, Lee IS, Bae YM, Suh YH, Kim MK, Kim TJ, Jung KC, Park WS, Park CS, Chung DH, Ahn K, Kim IS, Ko YH, Bang YJ, Kim CW, Park SH (2001) CD99 regulates the transport of MHC class I molecules from the Golgi complex to the cell surface. J Immunol 166(2):787–794

    Article  CAS  Google Scholar 

  18. Manara MC, Bernard G, Lollini PL, Nanni P, Zuntini M, Landuzzi L, Benini S, Lattanzi G, Sciandra M, Serra M, Colombo MP, Bernard A, Picci P, Scotlandi K (2006) CD99 acts as an oncosuppressor in osteosarcoma. Mol Biol Cell 17(4):1910–1921. https://doi.org/10.1091/mbc.e05-10-0971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manara MC, Pasello M, Scotlandi K (2018) CD99: a cell surface protein with an oncojanus role in tumors. Genes (Basel). https://doi.org/10.3390/genes9030159

    Article  Google Scholar 

  20. Scotlandi K, Perdichizzi S, Bernard G, Nicoletti G, Nanni P, Lollini PL, Curti A, Manara MC, Benini S, Bernard A, Picci P (2006) Targeting CD99 in association with doxorubicin: an effective combined treatment for Ewing’s sarcoma. Eur J Cancer 42(1):91–96. https://doi.org/10.1016/j.ejca.2005.09.015

    Article  CAS  PubMed  Google Scholar 

  21. Pettersen RD, Bernard G, Olafsen MK, Pourtein M, Lie SO (2001) CD99 signals caspase-independent T cell death. J Immunol 166(8):4931–4942

    Article  CAS  Google Scholar 

  22. Husak Z, Printz D, Schumich A, Potschger U, Dworzak MN (2010) Death induction by CD99 ligation in TEL/AML1-positive acute lymphoblastic leukemia and normal B cell precursors. J Leukoc Biol 88(2):405–412. https://doi.org/10.1189/jlb.0210097

    Article  CAS  PubMed  Google Scholar 

  23. Chung SS, Eng WS, Hu W, Khalaj M, Garrett-Bakelman FE, Tavakkoli M, Levine RL, Carroll M, Klimek VM, Melnick AM, Park CY (2017) CD99 is a therapeutic target on disease stem cells in myeloid malignancies. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaj2025

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee H, Park HJ, Park EH, Ju HY, Oh CM, Kong HJ, Jung KW, Park BK, Lee E, Eom HS, Won YJ (2018) Nationwide statistical analysis of lymphoid malignancies in Korea. Cancer Res Treat 50(1):222–238. https://doi.org/10.4143/crt.2017.093

    Article  PubMed  Google Scholar 

  25. Pileri SA, Falini B (2009) Mantle cell lymphoma. Haematologica 94(11):1488–1492. https://doi.org/10.3324/haematol.2009.013359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arora M, Gowda S, Tuscano J (2016) A comprehensive review of lenalidomide in B-cell non-Hodgkin lymphoma. Ther Adv Hematol 7(4):209–221. https://doi.org/10.1177/2040620716652861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jares P, Colomer D, Campo E (2007) Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 7(10):750–762. https://doi.org/10.1038/nrc2230

    Article  CAS  PubMed  Google Scholar 

  28. Dreyling M, Amador V, Callanan M, Jerkeman M, Le Gouill S, Pott C, Rule S, Zaja F, European Mantle Cell Lymphoma N (2015) Update on the molecular pathogenesis and targeted approaches of mantle cell lymphoma: summary of the 12th annual conference of the European Mantle Cell Lymphoma Network. Leuk Lymphoma 56(4):866–876. https://doi.org/10.3109/10428194.2014.940584

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Wang M, Romaguera J (2014) Current regimens and novel agents for mantle cell lymphoma. Br J Haematol 167(1):3–18. https://doi.org/10.1111/bjh.13000

    Article  CAS  PubMed  Google Scholar 

  30. Gao Q, Yellapantula V, Fenelus M, Pichardo J, Wang L, Landgren O, Dogan A, Roshal M (2018) Tumor suppressor CD99 is downregulated in plasma cell neoplasms lacking CCND1 translocation and distinguishes neoplastic from normal plasma cells and B-cell lymphomas with plasmacytic differentiation from primary plasma cell neoplasms. Mod Pathol 31(6):881–889. https://doi.org/10.1038/s41379-018-0011-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pokrass MJ, Liu MF, Lindorfer MA, Taylor RP (2013) Activation of complement by monoclonal antibodies that target cell-associated beta(2)-microglobulin: implications for cancer immunotherapy. Mol Immunol 56(4):549–560. https://doi.org/10.1016/j.molimm.2013.05.242

    Article  CAS  PubMed  Google Scholar 

  32. Dworzak MN, Fritsch G, Buchinger P, Fleischer C, Printz D, Zellner A, Schollhammer A, Steiner G, Ambros PF, Gadner H (1994) Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and peripheral blood. Blood 83(2):415–425

    Article  CAS  Google Scholar 

  33. Lee SP, Park S, Park J, Hong J, Ko YH (2011) Clinicopathologic characteristics of CD99-positive diffuse large B-cell lymphoma. Acta Haematol 125(3):167–174. https://doi.org/10.1159/000322551

    Article  CAS  PubMed  Google Scholar 

  34. Bernard G, Breittmayer JP, de Matteis M, Trampont P, Hofman P, Senik A, Bernard A (1997) Apoptosis of immature thymocytes mediated by E2/CD99. J Immunol 158(6):2543–2550

    CAS  PubMed  Google Scholar 

  35. Bakema JE, van Egmond M (2014) Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer. Curr Top Microbiol Immunol 382:373–392. https://doi.org/10.1007/978-3-319-07911-0_17

    Article  CAS  PubMed  Google Scholar 

  36. Redman JM, Hill EM, AlDeghaither D, Weiner LM (2015) Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 67(2 Pt A):28–45. https://doi.org/10.1016/j.molimm.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lo Nigro C, Macagno M, Sangiolo D, Bertolaccini L, Aglietta M, Merlano MC (2019) NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumors: biological evidence and clinical perspectives. Ann Transl Med 7(5):105. https://doi.org/10.21037/atm.2019.01.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manches O, Lui G, Chaperot L, Gressin R, Molens JP, Jacob MC, Sotto JJ, Leroux D, Bensa JC, Plumas J (2003) In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood 101(3):949–954. https://doi.org/10.1182/blood-2002-02-0469

    Article  CAS  PubMed  Google Scholar 

  39. Nijhof IS, Casneuf T, van Velzen J, van Kessel B, Axel AE, Syed K, Groen RW, van Duin M, Sonneveld P, Minnema MC, Zweegman S, Chiu C, Bloem AC, Mutis T, Lokhorst HM, Sasser AK, van de Donk NW (2016) CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood 128(7):959–970. https://doi.org/10.1182/blood-2016-03-703439

    Article  CAS  PubMed  Google Scholar 

  40. Bannerji R, Kitada S, Flinn IW, Pearson M, Young D, Reed JC, Byrd JC (2003) Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol 21(8):1466–1471. https://doi.org/10.1200/JCO.2003.06.012

    Article  CAS  PubMed  Google Scholar 

  41. Kato Y, Kunita A, Fukayama M, Abe S, Nishioka Y, Uchida H, Tahara H, Yamada S, Yanaka M, Nakamura T, Saidoh N, Yoshida K, Fujii Y, Honma R, Takagi M, Ogasawara S, Murata T, Kaneko MK (2017) Antiglycopeptide mouse monoclonal antibody LpMab-21 exerts antitumor activity against human podoplanin through antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Monoclon Antib Immunodiagn Immunother 36(1):20–24. https://doi.org/10.1089/mab.2016.0045

    Article  CAS  PubMed  Google Scholar 

  42. Takei J, Ohishi T, Kaneko MK, Harada H, Kawada M, Kato Y (2020) A defucosylated anti-PD-L1 monoclonal antibody 13-mG2a-f exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma. Biochem Biophys Rep 24:100801. https://doi.org/10.1016/j.bbrep.2020.100801

    Article  PubMed  PubMed Central  Google Scholar 

  43. Watanabe M, Ohishi T, Kuzuoka M, Nudelman ED, Stroud MR, Kubota T, Kodairo S, Abe O, Hirohashi S, Shimosato Y et al (1991) In vitro and in vivo antitumor effects of murine monoclonal antibody NCC-ST-421 reacting with dimeric Le(a) (Le(a)/Le(a)) epitope. Cancer Res 51(8):2199–2204

    CAS  PubMed  Google Scholar 

  44. Guhad FA, Jensen HE, Hau J (2000) Complement activation in SCID and nude mice is related to severity of tissue inflammation in the Candida mastitis model. FEMS Microbiol Lett 192(1):27–31. https://doi.org/10.1111/j.1574-6968.2000.tb09354.x

    Article  CAS  PubMed  Google Scholar 

  45. Dhandapani M, Goldman A (2017) Preclinical cancer models and biomarkers for drug development: new technologies and emerging tools. J Mol Biomark Diagn. https://doi.org/10.4172/2155-9929.1000356

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gengenbacher N, Singhal M, Augustin HG (2017) Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 17(12):751–765. https://doi.org/10.1038/nrc.2017.92

    Article  CAS  PubMed  Google Scholar 

  47. Feng L, Wang W, Yao HP, Zhou J, Zhang R, Wang MH (2015) Human tumor xenografts in mouse as a model for evaluating therapeutic efficacy of monoclonal antibodies or antibody-drug conjugate targeting receptor tyrosine kinases. Methods Mol Biol 1233:151–159. https://doi.org/10.1007/978-1-4939-1789-1_14

    Article  PubMed  Google Scholar 

  48. Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA (2002) CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 3(2):143–150. https://doi.org/10.1038/ni749

    Article  CAS  PubMed  Google Scholar 

  49. Choi G, Roh J, Park CS (2016) CD99 is strongly expressed in basal cells of the normal adult epidermis and some subpopulations of appendages: comparison with developing fetal skin. J Pathol Transl Med 50(5):361–368. https://doi.org/10.4132/jptm.2016.06.19

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Distinguished Research Professor Grant (NRCT808/2563) of the National Research Council of Thailand, Chiang Mai University Center of Excellence Project and Japan Student Services Organization (JASSO) scholarship (Grant no. UTB1717401001).

Author information

Authors and Affiliations

Authors

Contributions

NT conceived the study, designed and carried out experiments, analyzed data and drafted the manuscript. GS performed ADCC assay of IL-2 activated splenocytes and participated in in vivo experiments. RK participated in in vivo experiments. WK and SO conceived the study, and were involved in the experimental design, interpretation of results and editing the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Watchara Kasinrerk or Seiji Okada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

Mice were bred and cared for in the animal research facility according to institutional guidelines. All experimental procedures in this study were approved by the Institutional Animal Care and Use Committee at Kumamoto University, Japan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1203 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takheaw, N., Sittithumcharee, G., Kariya, R. et al. Anti-human CD99 antibody exerts potent antitumor effects in mantle cell lymphoma. Cancer Immunol Immunother 70, 1557–1567 (2021). https://doi.org/10.1007/s00262-020-02789-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02789-0

Keywords

Navigation