Skip to main content
Log in

microRNA expression patterns in tumor infiltrating lymphocytes are strongly associated with response to adoptive cell transfer therapy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Adoptive cell transfer (ACT) using autologous tumor infiltrating lymphocytes (TILs) was previously shown to yield clinical response in metastatic melanoma patients as an advanced line. Unfortunately, there is no reliable marker for predicting who will benefit from the treatment. We analyzed TIL samples from the infusion bags used for treatment of 57 metastatic melanoma patients and compared their microRNA profiles. The discovery cohort included six responding patients and seven patients with progressive disease, as defined by RECIST1.1. High throughput analysis with NanoString nCounter demonstrated significantly higher levels of miR-34a-5p and miR-22-3p among TIL from non-responders. These results were validated in TIL infusion bag samples from an independent cohort of 44 patients, using qRT-PCR of the individual microRNAs. Using classification trees, a data-driven predictive model for response was built, based on the level of expression of these microRNAs. Patients that achieved stable disease were classified with responders, setting apart the patients with progressive disease. Moreover, the expression levels of miR-34a-5p in the infused TIL created distinct survival groups, which strongly supports its role as a potential biomarker for TIL-ACT therapy. Indeed, when tested against autologous melanoma cells, miRLow TIL cultures exhibited significantly higher cytotoxic activity than miRHigh TIL cultures, and expressed features of terminally exhausted effectors. Finally, overexpression of miR-34a-5p or miR-22-3p in TIL inhibited their cytotoxic ability in vitro. Overall, we show that a two-microRNA signature correlates with failure of TIL-ACT therapy and survival in melanoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sang M, Wang L, Ding C, Zhou X, Wang B, Lian Y, Shan B (2011) Melanoma-associated antigen genes - an update. Cancer Lett 302:85–90. (S0304-3835(10)00506-9)

    Article  CAS  PubMed  Google Scholar 

  2. Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218. https://doi.org/10.1038/nature12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zikich D, Schachter J, Besser MJ (2013) Immunotherapy for the management of advanced melanoma: the next steps. Am J Clin Dermatol 14:261–272. https://doi.org/10.1007/s40257-013-0013-0

    Article  PubMed  Google Scholar 

  4. Lee C, Collichio F, Ollila D, Moschos S (2013) Historical review of melanoma treatment and outcomes. Clin Dermatol 31:141–147. https://doi.org/10.1016/j.clindermatol.2012.08.015s0738-081x

    Article  PubMed  Google Scholar 

  5. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. https://doi.org/10.1056/nejmoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526. https://doi.org/10.1056/nejmoa1104621

    Article  CAS  PubMed  Google Scholar 

  7. Robert C, Long GV, Brady B et al (2014) Nivolumab in Previously Untreated Melanoma without BRAF Mutation. N Engl J Med. https://doi.org/10.1056/nejmoa1412082

    Article  PubMed  Google Scholar 

  8. Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med 372:2521–2532. https://doi.org/10.1056/nejmoa1503093

    Article  CAS  PubMed  Google Scholar 

  9. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med 373:23–34. https://doi.org/10.1056/nejmoa1504030

    Article  PubMed  PubMed Central  Google Scholar 

  10. Margolis N, Markovits E, Markel G (2019) Reprogramming lymphocytes for the treatment of melanoma: from biology to therapy. Adv Drug Deliv Rev 141:104–124

    Article  CAS  PubMed  Google Scholar 

  11. Markel G, Seidman R, Stern N et al (2006) Inhibition of human tumor-infiltrating lymphocyte effector functions by the homophilic carcinoembryonic cell adhesion molecule 1 interactions. J Immunol 177:6062–6071. (177/9/6062)

    Article  CAS  PubMed  Google Scholar 

  12. Ortenberg R, Sapir Y, Raz L et al (2012) Novel Immunotherapy for Malignant Melanoma with a Monoclonal Antibody That Blocks CEACAM1 Homophilic Interactions. Mol Cancer Ther 11:1300–1310. https://doi.org/10.1158/1535-7163

    Article  PubMed  Google Scholar 

  13. Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21:233–240. (S0952-7915(09)00025-9)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Besser MJ, Shapira-Frommer R, Treves AJ et al (2009) Minimally cultured or selected autologous tumor-infiltrating lymphocytes after a lympho-depleting chemotherapy regimen in metastatic melanoma patients. J Immunother 32:415–423. https://doi.org/10.1097/cji.0b013e31819c8bda00002371

    Article  CAS  PubMed  Google Scholar 

  15. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26:332–342

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tran KQ, Zhou J, Durflinger KH, Langhan MM, Shelton TE, Wunderlich JR, Robbins PF, Rosenberg SA, Dudley ME (2008) Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother 31:742–751. https://doi.org/10.1097/cji.0b013e31818403d500002371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Besser MJ, Shapira-Frommer R, Itzhaki O et al (2013) Adoptive Transfer of Tumor Infiltrating Lymphocytes in Metastatic Melanoma Patients: intent-to-Treat Analysis and Efficacy after Failure to Prior Immunotherapies. Clin Cancer Res 19:4792–4800. (1078-0432.CCR-13-0380)

    Article  CAS  PubMed  Google Scholar 

  18. Rosenberg SA, Yang JC, Sherry RM et al (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17:4550–4557. https://doi.org/10.1158/1078-0432.ccr-11-01161078-0432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Radvanyi LG, Bernatchez C, Zhang M et al (2012) Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res 18:6758–6770. https://doi.org/10.1158/1078-0432.ccr-12-11771078-0432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. (S0092867404000455)

    Article  CAS  PubMed  Google Scholar 

  21. Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22:165–173. (S0168-9525(06)00021-7)

    Article  CAS  PubMed  Google Scholar 

  22. Wojcicka A, de la Chapelle A, Jazdzewski K (2013) MicroRNA-related sequence variations in human cancers. Hum Genet. https://doi.org/10.1007/s00439-013-1397-x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. https://doi.org/10.1101/gr.082701.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122. https://doi.org/10.1038/nri2708

    Article  CAS  PubMed  Google Scholar 

  25. Basak I, Patil KS, Alves G, Larsen JP, Moller SG (2015) microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell Mol Life Sci. https://doi.org/10.1007/s00018-015-2093

    Article  PubMed  Google Scholar 

  26. Pencheva N, Tavazoie SF (2013) Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 15:546–554. https://doi.org/10.1038/ncb2769ncb2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Di Leva G, Croce CM (2013) miRNA profiling of cancer. Curr Opin Genet Dev 23:3–11. https://doi.org/10.1016/j.gde.2013.01.004s0959-437x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Iorio MV, Croce CM (2012) microRNA involvement in human cancer. Carcinogenesis 33:1126–1133. https://doi.org/10.1093/carcin/bgs140bgs140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 20:460–469. https://doi.org/10.1016/j.molmed.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  30. Nana-Sinkam SP, Croce CM (2013) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93:98–104. https://doi.org/10.1038/clpt.2012.192

    Article  CAS  PubMed  Google Scholar 

  31. Itzhaki O, Hovav E, Ziporen Y et al (2011) Establishment and large-scale expansion of minimally cultured “young” tumor infiltrating lymphocytes for adoptive transfer therapy. J Immunother 34:212–220. https://doi.org/10.1097/cji.0b013e318209c94c

    Article  PubMed  Google Scholar 

  32. Besser MJ, Shapira-Frommer R, Treves AJ et al (2010) Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res 16:2646–2655. https://doi.org/10.1158/1078-0432.ccr-10-00411078-0432

    Article  CAS  PubMed  Google Scholar 

  33. Galore-Haskel G, Nemlich Y, Greenberg E et al. (2015) A novel immune resistance mechanism of melanoma cells controlled by the ADAR1 enzyme. Oncotarget. 6: 28999-9015. https://doi.org/10.18632/oncotarget.4905

  34. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  35. Liao Y, Smyth GK, Shi W (2014) FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  36. Law CW, Chen Y, Shi W, Smyth GK (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29. https://doi.org/10.1186/gb-2014-15-2-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61. https://doi.org/10.1016/j.cell.2014.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. Journal of Computational and Graphical statistics. 15:651–674

    Article  Google Scholar 

  40. Shmueli G, Bruce P, Yahav I, Petal R, Lichtendahl KC (2017) Data mining for business intelligence: Concepts, techniques, and applications in R.. 1st ed. John Wiley and Sons

  41. Zikich D, Schachter J, Besser MJ (2016) Predictors of tumor-infiltrating lymphocyte efficacy in melanoma. Immunotherapy. 8:35–43. https://doi.org/10.2217/imt.15.99

    Article  CAS  PubMed  Google Scholar 

  42. Ji Y, Hocker JD, Gattinoni L (2015) Enhancing adoptive T cell immunotherapy with microRNA therapeutics. Semin Immunol. (S1044-5323(15)00100-1)

  43. Jeker LT, Bluestone JA (2013) MicroRNA regulation of T-cell differentiation and function. Immunol Rev 253:65–81. https://doi.org/10.1111/imr.12061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paley MA, Kroy DC, Odorizzi PM et al (2012) Progenitor and terminal subsets of CD8 + T cells cooperate to contain chronic viral infection. Science 338:1220–1225. https://doi.org/10.1126/science.1229620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thommen DS, Koelzer VH, Herzig P et al (2018) A transcriptionally and functionally distinct PD-1 + CD8 + T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med 24:994–1004. https://doi.org/10.1038/s41591-018-0057-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. LaFleur MW, Nguyen TH, Coxe MA et al (2019) PTPN2 regulates the generation of exhausted CD8 + T cell subpopulations and restrains tumor immunity. Nat Immunol 20:1335–1347. https://doi.org/10.1038/s41590-019-0480-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Agostini M, Knight RA (2014) miR-34: from bench to bedside. Oncotarget. 5: 872-81. doi: 1825 [pii] https://doi.org/10.18632/oncotarget.1825

  48. Xiong J (2012) Emerging roles of microRNA-22 in human disease and normal physiology. Curr Mol Med 12:247–258. (CMM-EPub-201201190201-005)

    Article  CAS  PubMed  Google Scholar 

  49. Cobb BS, Hertweck A, Smith J et al (2006) A role for Dicer in immune regulation. J Exp Med 203:2519–2527. jem.20061692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuijk LM, Verstege MI, Rekers NV, Bruijns SC, Hooijberg E, Roep BO, de Gruijl TD, van Kooyk Y, Unger WW (2013) Notch controls generation and function of human effector CD8 + T cells. Blood 121:2638–2646. https://doi.org/10.1182/blood-2012-07-442962

    Article  CAS  PubMed  Google Scholar 

  51. Sierra RA, Thevenot P, Raber PL, Cui Y, Parsons C, Ochoa AC, Trillo-Tinoco J, Del Valle L, Rodriguez PC (2014) Rescue of notch-1 signaling in antigen-specific CD8 + T cells overcomes tumor-induced T-cell suppression and enhances immunotherapy in cancer. Cancer Immunol Res 2:800–811. https://doi.org/10.1158/2326-6066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31:220–227. https://doi.org/10.1016/j.it.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Aronson Fund and the Lemelbaum family fund for their generous support. G.M is supported by the Melanoma Research Alliance Saban Family Team Sciences Award, Samueli Foundation Grant for Integrative Immuno-Oncology and Israel Science Foundation Grant 15/1925.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal Markel.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galore-Haskel, G., Greenberg, E., Yahav, I. et al. microRNA expression patterns in tumor infiltrating lymphocytes are strongly associated with response to adoptive cell transfer therapy. Cancer Immunol Immunother 70, 1541–1555 (2021). https://doi.org/10.1007/s00262-020-02782-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02782-7

Keywords

Navigation