Skip to main content

Advertisement

Log in

Telomerase-specific oncolytic immunotherapy for promoting efficacy of PD-1 blockade in osteosarcoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immune checkpoint inhibitors including anti-programmed cell death 1 (PD-1) antibody have recently improved clinical outcome in certain cancer patients; however, osteosarcoma (OS) patients are refractory to PD-1 blockade. Oncolytic virotherapy has emerged as novel immunogenic therapy to augment antitumor immune response. We developed a telomerase-specific replication-competent oncolytic adenovirus OBP-502 that induces lytic cell death via binding to integrins. In this study, we assessed the combined effect of PD-1 blockade and OBP-502 in OS cells. The expression of coxsackie and adenovirus receptor (CAR), integrins αvβ3 and αvβ5, and programmed cell death ligand 1 (PD-L1) was analyzed in two murine OS cells (K7M2, NHOS). The cytopathic activity of OBP-502 in both cells was analyzed using the XTT assay. OBP-502-induced immunogenic cell death was assessed by analyzing the level of extracellular ATP and high-mobility group box protein B1 (HMGB1). Subcutaneous tumor models for K7M2 and NHOS cells were used to evaluate the antitumor effect and number of tumor-infiltrating CD8+ cells in combination therapy. K7M2 and NHOS cells showed high expression of integrins αvβ3 and αvβ5, but not CAR. OBP-502 significantly suppressed the viability of both cells, in which PD-L1 expression and the release of ATP and HMGB1 were significantly increased. Intratumoral injection of OBP-502 significantly augmented the efficacy of PD-1 blockade on subcutaneous K2M2 and NHOS tumor models via enhancement of tumor-infiltrating CD8+  T cells. Our results suggest that telomerase-specific oncolytic virotherapy is a promising antitumor strategy to promote the efficacy of PD-1 blockade in OS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

APC:

Allophycocyanin

CAR:

Coxsackie and adenovirus receptor

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

DAMPs:

Damage-associated molecular patterns

HMGB1:

High mobility group box 1

hTERT:

Human telomerase reverse transcriptase

ICD:

Immunogenic cell death

ICI:

Immune checkpoint inhibitor

LC3:

Microtubule-associated protein 1 light chain 3

MFI:

Mean fluorescence intensity

MOI:

Multiplicity of infection

OS:

Osteosarcoma

PARP:

Poly (ADP-ribose) polymerase

PBS:

Phosphate buffered saline

PD-1:

Programmed cell death 1

PD-L1:

Programmed cell death ligand 1

PFU:

Plaque-forming units

References

  1. Bielack SS, Kempf-Bielack B, Delling G et al (2002) Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 20:776–790. https://doi.org/10.1200/JCO.2002.20.3.776

    Article  PubMed  Google Scholar 

  2. Bacci G, Longhi A, Versari M, Mercuri M, Briccoli A, Picci P (2006) Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer 106:1154–1161. https://doi.org/10.1002/cncr.21724

    Article  PubMed  Google Scholar 

  3. Iwamoto Y, Tanaka K, Isu K et al (2009) Multiinstitutional phase II study of neoadjuvant chemotherapy for osteosarcoma (NECO study) in Japan: NECO-93J and NECO-95J. J Orthop Sci 14:397–404. https://doi.org/10.1007/s00776-009-1347-6

    Article  CAS  PubMed  Google Scholar 

  4. Allison DC, Carney SC, Ahlmann ER, Hendifar A, Chawla S, Fedenko A, Angeles C, Menendez LR (2012) A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma 2012:704872. https://doi.org/10.1155/2012/704872

    Article  PubMed  PubMed Central  Google Scholar 

  5. Goorin AM, Harris MB, Bernstein M et al (2002) Phase II/III trial of etoposide and high-dose ifosfamide in newly diagnosed metastatic osteosarcoma: a pediatric oncology group trial. J Clin Oncol 20:426–433. https://doi.org/10.1200/JCO.2002.20.2.426

    Article  CAS  PubMed  Google Scholar 

  6. Tsuchiya H, Kanazawa Y, Abdel-Wanis ME, Asada N, Abe S, Isu K, Sugita T, Tomita K (2002) Effect of timing of pulmonary metastases identification on prognosis of patients with osteosarcoma: the Japanese Musculoskeletal Oncology Group study. J Clin Oncol 20:3470–3477. https://doi.org/10.1200/JCO.2002.11.028

    Article  PubMed  Google Scholar 

  7. Vasquez L, Tarrillo F, Oscanoa M, Maza I, Geronimo J, Paredes G, Silva JM, Sialer L (2016) Analysis of prognostic factors in high-grade osteosarcoma of the extremities in children: a 15-year single-institution experience. Front Oncol 6:22. https://doi.org/10.3389/fonc.2016.00022

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  9. Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330. https://doi.org/10.1056/NEJMoa1412082

    Article  CAS  PubMed  Google Scholar 

  10. Tawbi HA, Burgess M, Bolejack V et al (2017) Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 18:1493–1501. https://doi.org/10.1016/S1470-2045(17)30624-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawashima T, Kagawa S, Kobayashi N et al (2004) Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res 10:285–292. https://doi.org/10.1158/1078-0432.ccr-1075-3

    Article  CAS  PubMed  Google Scholar 

  12. Hashimoto Y, Watanabe Y, Shirakiya Y et al (2008) Establishment of biological and pharmacokinetic assays of telomerase-specific replication-selective adenovirus. Cancer Sci 99:385–390. https://doi.org/10.1111/j.1349-7006.2007.00665.x

    Article  CAS  PubMed  Google Scholar 

  13. Sasaki T, Tazawa H, Hasei J et al (2011) Preclinical evaluation of telomerase-specific oncolytic virotherapy for human bone and soft tissue sarcomas. Clin Cancer Res 17:1828–1838. https://doi.org/10.1158/1078-0432.CCR-10-2066

    Article  CAS  PubMed  Google Scholar 

  14. Kuroda S, Fujiwara T, Shirakawa Y et al (2010) Telomerase-dependent oncolytic adenovirus sensitizes human cancer cells to ionizing radiation via inhibition of DNA repair machinery. Cancer Res 70:9339–9348. https://doi.org/10.1158/0008-5472.CAN-10-2333

    Article  CAS  PubMed  Google Scholar 

  15. Liu D, Kojima T, Ouchi M, Kuroda S, Watanabe Y, Hashimoto Y, Onimatsu H, Urata Y, Fujiwara T (2009) Preclinical evaluation of synergistic effect of telomerase-specific oncolytic virotherapy and gemcitabine for human lung cancer. Mol Cancer Ther 8:980–987. https://doi.org/10.1158/1535-7163.MCT-08-0901

    Article  CAS  PubMed  Google Scholar 

  16. Nemunaitis J, Tong AW, Nemunaitis M et al (2010) A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther 18:429–434. https://doi.org/10.1038/mt.2009.262

    Article  CAS  PubMed  Google Scholar 

  17. Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G (2008) Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 15:3–12. https://doi.org/10.1038/sj.cdd.4402269

    Article  CAS  PubMed  Google Scholar 

  18. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72. https://doi.org/10.1146/annurev-immunol-032712-100008

    Article  CAS  PubMed  Google Scholar 

  19. Tazawa H, Kuroda S, Hasei J, Kagawa S, Fujiwara T (2017) Impact of autophagy in oncolytic adenoviral therapy for cancer. Int J Mol Sci. https://doi.org/10.3390/ijms18071479

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ilett E, Kottke T, Thompson J et al (2017) Prime-boost using separate oncolytic viruses in combination with checkpoint blockade improves anti-tumour therapy. Gene Ther 24:21–30. https://doi.org/10.1038/gt.2016.70

    Article  CAS  PubMed  Google Scholar 

  21. Kaufman HL, Kohlhapp FJ, Zloza A (2015) Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14:642–662. https://doi.org/10.1038/nrd4663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fend L, Yamazaki T, Remy C et al (2017) Immune checkpoint blockade, immunogenic chemotherapy or IFN-alpha blockade boost the local and abscopal effects of oncolytic virotherapy. Cancer Res 77:4146–4157. https://doi.org/10.1158/0008-5472.CAN-16-2165

    Article  CAS  PubMed  Google Scholar 

  23. Rajani K, Parrish C, Kottke T et al (2016) Combination therapy with reovirus and Anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol Ther 24:166–174. https://doi.org/10.1038/mt.2015.156

    Article  CAS  PubMed  Google Scholar 

  24. Khanna C, Prehn J, Yeung C, Caylor J, Tsokos M, Helman L (2000) An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin Exp Metastasis 18:261–271. https://doi.org/10.1023/a:1006767007547

    Article  CAS  PubMed  Google Scholar 

  25. Khanna C, Khan J, Nguyen P, Prehn J, Caylor J, Yeung C, Trepel J, Meltzer P, Helman L (2001) Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res 61:3750–3759

    CAS  PubMed  Google Scholar 

  26. Kusumi T, Nishi T, Tanaka M, Tsuchida S, Kudo H (2001) A murine osteosarcoma cell line with a potential to develop ossification upon transplantation. Jpn J Cancer Res 92:649–658. https://doi.org/10.1111/j.1349-7006.2001.tb01144.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nishi T, Kusumi T, Tanaka M, Sato F, Sasaki M, Kudo H, Kijima H (2008) Establishment of transplantable murine osteosarcoma cell line with endochondral ossification. Anticancer Res 28:1627–1631

    PubMed  Google Scholar 

  28. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323. https://doi.org/10.1126/science.275.5304.1320

    Article  CAS  PubMed  Google Scholar 

  29. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73:309–319. https://doi.org/10.1016/0092-8674(93)90231-e

    Article  CAS  PubMed  Google Scholar 

  30. Hasei J, Sasaki T, Tazawa H et al (2013) Dual programmed cell death pathways induced by p53 transactivation overcome resistance to oncolytic adenovirus in human osteosarcoma cells. Mol Cancer Ther 12:314–325. https://doi.org/10.1158/1535-7163.MCT-12-0869

    Article  CAS  PubMed  Google Scholar 

  31. Osaki S, Tazawa H, Hasei J et al (2016) Ablation of MCL1 expression by virally induced microRNA-29 reverses chemoresistance in human osteosarcomas. Sci Rep 6:28953. https://doi.org/10.1038/srep28953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bartlett DL, Liu Z, Sathaiah M, Ravindranathan R, Guo Z, He Y, Guo ZS (2013) Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer 12:103. https://doi.org/10.1186/1476-4598-12-103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo ZS, Liu Z, Bartlett DL (2014) Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol 4:74. https://doi.org/10.3389/fonc.2014.00074

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jiang H, Fueyo J (2014) Healing after death: antitumor immunity induced by oncolytic adenoviral therapy. Oncoimmunology 3:e947872. https://doi.org/10.4161/21624011.2014.947872

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. https://doi.org/10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kono K, Nakajima S, Mimura K (2020) Current status of immune checkpoint inhibitors for gastric cancer. Gastric Cancer 23:565–578. https://doi.org/10.1007/s10120-020-01090-4

    Article  CAS  PubMed  Google Scholar 

  37. Passardi A, Canale M, Valgiusti M, Ulivi P (2017) Immune checkpoints as a target for colorectal cancer treatment. Int J Mol Sci. https://doi.org/10.3390/ijms18061324

    Article  PubMed  PubMed Central  Google Scholar 

  38. Johnson DB, Peng C, Sosman JA (2015) Nivolumab in melanoma: latest evidence and clinical potential. Ther Adv Med Oncol 7:97–106. https://doi.org/10.1177/1758834014567469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Michaud M, Martins I, Sukkurwala AQ et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–1577. https://doi.org/10.1126/science.1208347

    Article  CAS  PubMed  Google Scholar 

  40. Camuzard O, Santucci-Darmanin S, Carle GF, Pierrefite-Carle V (2019) Role of autophagy in osteosarcoma. J Bone Oncol 16:100235. https://doi.org/10.1016/j.jbo.2019.100235

    Article  PubMed  PubMed Central  Google Scholar 

  41. Niu J, Yan T, Guo W, Wang W, Zhao Z (2019) Insight into the role of autophagy in osteosarcoma and its therapeutic implication. Front Oncol 9:1232. https://doi.org/10.3389/fonc.2019.01232

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tazawa H, Kagawa S, Fujiwara T (2013) Oncolytic adenovirus-induced autophagy: tumor-suppressive effect and molecular basis. Acta Med Okayama 67:333–342. https://doi.org/10.18926/AMO/52006

    Article  CAS  PubMed  Google Scholar 

  43. Yokoyama T, Iwado E, Kondo Y et al (2008) Autophagy-inducing agents augment the antitumor effect of telomerase-selective oncolytic adenovirus OBP-405 on glioblastoma cells. Gene Ther 15:1233–1239. https://doi.org/10.1038/gt.2008.98

    Article  CAS  PubMed  Google Scholar 

  44. Blair GE, Dixon SC, Griffiths SA, Zajdel ME (1989) Restricted replication of human adenovirus type 5 in mouse cell lines. Virus Res 14:339–346. https://doi.org/10.1016/0168-1702(89)90026-9

    Article  CAS  PubMed  Google Scholar 

  45. Ritz JM, Kuhle O, Riethdorf S, Sipos B, Deppert W, Englert C, Gunes C (2005) A novel transgenic mouse model reveals humanlike regulation of an 8-kbp human TERT gene promoter fragment in normal and tumor tissues. Cancer Res 65:1187–1196. https://doi.org/10.1158/0008-5472.CAN-04-3046

    Article  CAS  PubMed  Google Scholar 

  46. Jia W, Wang S, Horner JW, Wang N, Wang H, Gunther EJ, DePinho RA, Zhu J (2011) A BAC transgenic reporter recapitulates in vivo regulation of human telomerase reverse transcriptase in development and tumorigenesis. FASEB J 25:979–989. https://doi.org/10.1096/fj.10-173989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schonrich G, Raftery MJ (2019) The PD-1/PD-L1 axis and virus infections: a delicate balance. Front Cell Infect Microbiol 9:207. https://doi.org/10.3389/fcimb.2019.00207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Muhlbauer M, Fleck M, Schutz C, Weiss T, Froh M, Blank C, Scholmerich J, Hellerbrand C (2006) PD-L1 is induced in hepatocytes by viral infection and by interferon-alpha and -gamma and mediates T cell apoptosis. J Hepatol 45:520–528. https://doi.org/10.1016/j.jhep.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  49. Tworkowski KA, Chakraborty AA, Samuelson AV, Seger YR, Narita M, Hannon GJ, Lowe SW, Tansey WP (2008) Adenovirus E1A targets p400 to induce the cellular oncoprotein Myc. Proc Natl Acad Sci USA 105:6103–6108. https://doi.org/10.1073/pnas.0802095105

    Article  PubMed  Google Scholar 

  50. Casey SC, Tong L, Li Y et al (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352:227–231. https://doi.org/10.1126/science.aac9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun C, Mezzadra R, Schumacher TN (2018) Regulation and function of the PD-L1 checkpoint. Immunity 48:434–452. https://doi.org/10.1016/j.immuni.2018.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74:665–674. https://doi.org/10.1158/0008-5472.CAN-13-0992

    Article  CAS  PubMed  Google Scholar 

  53. Thanindratarn P, Dean DC, Nelson SD, Hornicek FJ, Duan Z (2019) Advances in immune checkpoint inhibitors for bone sarcoma therapy. J Bone Oncol 15:100221. https://doi.org/10.1016/j.jbo.2019.100221

    Article  PubMed  PubMed Central  Google Scholar 

  54. D’Angelo SP, Mahoney MR, Van Tine BA et al (2018) Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol 19:416–426. https://doi.org/10.1016/S1470-2045(18)30006-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gong J, Le TQ, Massarelli E, Hendifar AE, Tuli R (2018) Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination. J Immunother Cancer 6:46. https://doi.org/10.1186/s40425-018-0361-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Takeshi Ieda, Tomoko Sueishi, Yuko Hoshijima, and Tae Yamanishi for their excellent technical support.

Funding

This study was supported in part by grants from the Ministry of Education, Science, and Culture, Japan (to T. Fujiwara, Nos. 16H05416 and 19H03731; T. Ozaki, No. 25293323; T. Kunisada, No. 16K10862; K. Sugiu, No. 15K10446; T. Komatsubara, No. 18K15242; H. Tazawa, No. 16K10596; Y. Mochizuki, No. 19K16835).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: HT, TO, and TF. Development of methodology: YM, HT, KD, and JH. Acquisition of data (provided animals, provided facilities, etc.): YM, KD, MK, HK, TK, KS, and AY. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, and computational analysis): YM, HT, KD, and JH. Writing, review, and/or revision of the manuscript: YM, HT, and TF. Administrative, technical, or material support: YU. Study supervision: HT, TK, SK, TO, and TF.

Corresponding author

Correspondence to Hiroshi Tazawa.

Ethics declarations

Conflict of interest

Y. Urata is President & CEO of Oncolys BioPharma, Inc. H. Tazawa and T. Fujiwara are consultants of Oncolys BioPharma, Inc. The other authors disclosed no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 125 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochizuki, Y., Tazawa, H., Demiya, K. et al. Telomerase-specific oncolytic immunotherapy for promoting efficacy of PD-1 blockade in osteosarcoma. Cancer Immunol Immunother 70, 1405–1417 (2021). https://doi.org/10.1007/s00262-020-02774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02774-7

Keywords

Navigation