Skip to main content

Advertisement

Log in

Monophosphoryl lipid A-induced activation of plasmacytoid dendritic cells enhances the anti-cancer effects of anti-PD-L1 antibodies

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Monophosphoryl lipid A (MPLA) is a toll-like receptor 4 ligand that promotes immune activation in mice and humans, without undesired inflammation. Immunotherapy by the combining immune checkpoint blockade and MPLA has shown promising anti-cancer effects in both mice and humans. In this study, we explored how MPLA enhanced the anti-cancer effects of anti-PD-L1 antibodies (Abs). Anti-cancer immunity induced by the combination of anti-PD-L1 Abs and MPLA failed in CD4 and CD8 cell-depleted mice. Moreover, the combination treatment of anti-PD-L1 Abs and MPLA synergistically enhanced the activation of plasmacytoid dendritic cells (pDCs) in the mouse in vivo, while conventional DCs were not. In addition, mice treated with anti-PD-L1 Abs and MPLA were not protected from B16 melanoma by blockade of interferon-alpha receptor (IFNAR). The combination of anti-PD-L1 Abs and MPLA also promoted human peripheral blood pDC activation and induced IFN-α-dependent T cell activation. Therefore, these results demonstrate that MPLA enhances anti-PD-L1 Ab-mediated anti-cancer immunity through the activation and IFN-α production of pDCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ab:

Antibody

DC:

Dendritic cell

CTLA-4:

Cytotoxic T lymphocyte antigen-4

CTL:

Cytotoxic T lymphocyte

cDC:

Conventional DC

IFN:

Interferon

IRF:

Interferon regulatory factor

MPLA:

Monophosphoryl lipid A

PD-1:

Programmed cell death protein

PD-L1:

PD ligand 1

pDC:

Plasmacytoid DC

tdLN:

Tumor draining lymph node

TLR:

Toll-like receptor

References

  1. Berzofsky JA, Terabe M, Trepel JB, Pastan I, Stroncek DF, Morris JC, Wood LV (2018) Cancer vaccine strategies: translation from mice to human clinical trials. Cancer Immunol Immunother 67:1863–1869

    CAS  PubMed  Google Scholar 

  2. Thomas S, Prendergast GC (2016) Cancer vaccines: a brief overview. Methods Mol Biol 1403:755–761

    PubMed  Google Scholar 

  3. Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang X-Y (2013) Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 119:421–475

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boyiadzis MM, Dhodapkar MV, Brentjens RJ et al (2018) Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. J Immunother Cancer 6:1–12

    Google Scholar 

  5. Mehta RS, Rezvani K (2018) Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol 9:283

    PubMed  PubMed Central  Google Scholar 

  6. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Xin YJ, Hodge J, Oliva C, Neftelinov S, Hubbard-Lucey V, Tang J (2020) Trends in clinical development for PD-1/PD-L1 inhibitors. Nat Rev Drug Discov 19:163

    Google Scholar 

  8. Constantinidou A, Alifieris C, Trafalis DT (2019) Targeting programmed cell death-1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol Ther 194:84–106

    CAS  PubMed  Google Scholar 

  9. Akinleye A, Rasool Z (2019) Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 12:92

    PubMed  PubMed Central  Google Scholar 

  10. Barclay J, Creswell J, León J (2018) Cancer immunotherapy and the PD-1/PD-L1 checkpoint pathway. Arch Esp Urol 71:393–399

    PubMed  Google Scholar 

  11. Schütz F, Stefanovic S, Mayer L, von Au A, Domschke C, Sohn C (2017) PD-1/PD-L1 pathway in breast cancer. Oncol Res Treat 40:294–297

    PubMed  Google Scholar 

  12. Dong Y, Sun Q, Zhang X (2017) PD-1 and its ligands are important immune checkpoints in cancer. Oncotarget. 8:2171

    PubMed  Google Scholar 

  13. Sun N-Y, Chen Y-L, Wu W-Y et al (2019) Blockade of PD-L1 enhances cancer immunotherapy by regulating dendritic cell maturation and macrophage polarization. Cancers. 11:1400

    CAS  PubMed Central  Google Scholar 

  14. Zhang W, Song Z, Xiao J, Liu X, Luo Y, Yang Z, Luo R, Li A (2019) Blocking the PD-1/PD-L1 axis in dendritic cell-stimulated cytokine-induced killer cells with pembrolizumab enhances their therapeutic effects against hepatocellular carcinoma. J Cancer. 10:2578

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Versteven M, Van den Bergh JM, Marcq E, Smits EL, Van Tendeloo VF, Hobo W, Lion E (2018) Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Front Immunol 9:394

    PubMed  PubMed Central  Google Scholar 

  16. Jeong Y, Kim GB, Ji Y et al (2020) Dendritic cell activation by an E. coli-derived monophosphoryl lipid A enhances the efficacy of PD-1 blockade. Cancer Lett 472:19–28

    CAS  PubMed  Google Scholar 

  17. Zhang W, Xu L, Park H-B et al (2020) Escherichia coli adhesion portion FimH functions as an adjuvant for cancer immunotherapy. Nat Commun 11:1–14

    Google Scholar 

  18. Seya T, Takeda Y, Takashima K, Yoshida S, Azuma M, Matsumoto M (2018) Adjuvant immunotherapy for cancer: both dendritic cell-priming and check-point inhibitor blockade are required for immunotherapy. Proc Jpn Acad Ser B 94:153–160

    CAS  Google Scholar 

  19. Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33:492–503

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Awate S, Babiuk LAB, Mutwiri G (2013) Mechanisms of action of adjuvants. Front Immunol 4:114

    PubMed  PubMed Central  Google Scholar 

  21. Wylie B, Macri C, Mintern JD, Waithman J (2019) Dendritic cells and cancer: from biology to therapeutic intervention. Cancers. 11:521

    CAS  PubMed Central  Google Scholar 

  22. Vermaelen K (2019) Vaccine strategies to improve anti-cancer cellular immune responses. Front Immunol 10:8

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Santamaria J, Darrigues J, van Meerwijk JP, Romagnoli P (2018) Antigen-presenting cells and T-lymphocytes homing to the thymus shape T cell development. Immunol Lett 204:9–15

    CAS  PubMed  Google Scholar 

  24. Van Willigen WW, Bloemendal M, Gerritsen WR, Schreibelt G, de Vries IJM, Bol KF (2018) Dendritic cell cancer therapy: vaccinating the right patient at the right time. Front Immunol 9:2265

    PubMed  PubMed Central  Google Scholar 

  25. Jego G, Pascual V, Palucka AK, Banchereau J (2005) Dendritic cells control B cell growth and diferentiation. Curr Dir Autoimmun 8:124–139

    CAS  PubMed  Google Scholar 

  26. Chistiakov DA, Orekhov AN, Sobenin IA, Bobryshev YV (2014) Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Front Physiol 5:279

    PubMed  PubMed Central  Google Scholar 

  27. Manh TPV, Alexandre Y, Baranek T, Crozat K, Dalod M (2013) Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation. Eur J Immunol 43:1706–1715

    CAS  PubMed  Google Scholar 

  28. Goold HD, Escors D, Conlan TJ, Chakraverty R, Bennett CL (2011) Conventional dendritic cells are required for the activation of helper-dependent CD8 T cell responses to a model antigen after cutaneous vaccination with lentiviral vectors. J Immunol 186:4565–4572

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sichien D, Lambrecht B, Guilliams M, Scott C (2017) Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunol 10:831–844

    CAS  PubMed  Google Scholar 

  30. Jegalian AG, Facchetti F, Jaffe ES (2009) Plasmacytoid dendritic cells: physiologic roles and pathologic states. Adv Anat Pathol 16:392

    PubMed  PubMed Central  Google Scholar 

  31. Vremec D, O’Keeffe M, Hochrein H, Fuchsberger M, Caminschi I, Lahoud M, Shortman K (2007) Production of interferons by dendritic cells, plasmacytoid cells, natural killer cells, and interferon-producing killer dendritic cells. Blood 109:1165–1173

    CAS  PubMed  Google Scholar 

  32. Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM (2011) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 10:499–511

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin J-O, Park H, Zhang W, de Vries JW, Gruszka A, Lee MW, Ahn D-R, Herrmann A, Kwak M (2017) Modular delivery of CpG-incorporated lipid-DNA nanoparticles for spleen DC activation. Biomaterials 115:81–89

    CAS  PubMed  Google Scholar 

  34. Jin J-O, Kim H, Huh YH, Herrmann A, Kwak M (2019) Soft matter DNA nanoparticles hybridized with CpG motifs and peptide nucleic acids enable immunological treatment of cancer. J Control Release 315:76–84

    CAS  PubMed  Google Scholar 

  35. Reilley MJ, Morrow B, Ager CR, Liu A, Hong DS, Curran MA (2019) TLR9 activation cooperates with T cell checkpoint blockade to regress poorly immunogenic melanoma. J Immunother Cancer 7:1–9

    Google Scholar 

  36. Chuang Y-C, Tseng J-C, Huang L-R, Huang C-M, Huang C-YF, Chuang T-H (2020) Adjuvant effect of toll-like receptor 9 activation on cancer immunotherapy using checkpoint blockade. Front Immunol 11:1075

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jang B, Xu L, Moorthy MS, Zhang W, Zeng L, Kang M, Kwak M, Oh J, Jin J-O (2017) Lipopolysaccharide-coated CuS nanoparticles promoted anti-cancer and anti-metastatic effect by immuno-photothermal therapy. Oncotarget. 8:105584

    PubMed  PubMed Central  Google Scholar 

  38. Chilton PM, Hadel DM, To TT, Mitchell TC, Darveau RP (2013) Adjuvant activity of naturally occurring monophosphoryl lipopolysaccharide preparations from mucosa-associated bacteria. Infect Immun 81:3317–3325

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gregg KA, Harberts E, Gardner FM, Pelletier MR, Cayatte C, Yu L, McCarthy MP, Marshall JD, Ernst RK (2017) Rationally designed TLR4 ligands for vaccine adjuvant discovery. MBio. 8:e00492-17

    PubMed  PubMed Central  Google Scholar 

  40. Casella CR, Mitchell TC (2008) Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci 65:3231

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Beck Z, Matyas GR, Alving CR (2015) Detection of liposomal cholesterol and monophosphoryl lipid A by QS-21 saponin and Limulus polyphemus amebocyte lysate. Biochim Biophys Acta 1848:775–780. https://doi.org/10.1016/j.bbamem.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  42. Romero CD, Varma TK, Hobbs JB, Reyes A, Driver B, Sherwood ER (2011) The toll-like receptor 4 agonist monophosphoryl lipid a augments innate host resistance to systemic bacterial infection. Infect Immun 79:3576–3587. https://doi.org/10.1128/iai.00022-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alving CR, Peachman KK, Rao M, Reed SG (2012) Adjuvants for human vaccines. Curr Opin Immunol 24:310–315. https://doi.org/10.1016/j.coi.2012.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tandrup Schmidt S, Foged C, Korsholm KS, Rades T, Christensen D (2016) Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and immunostimulators. Pharmaceutics. https://doi.org/10.3390/pharmaceutics8010007

    Article  PubMed  PubMed Central  Google Scholar 

  45. Watts BA III, George T, Sherwood ER, Good DW (2017) Monophosphoryl lipid A induces protection against LPS in medullary thick ascending limb through a TLR4-TRIF-PI3K signaling pathway. Am J Physiol-Renal Physiol 313:F103–F115

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Nguyen KB, Cousens LP, Doughty LA, Pien GC, Durbin JE, Biron CA (2000) Interferon α/β-mediated inhibition and promotion of interferon γ: STAT1 resolves a paradox. Nat Immunol 1:70–76

    CAS  PubMed  Google Scholar 

  47. Ng CT, Mendoza JL, Garcia KC, Oldstone MB (2016) Alpha and beta type 1 interferon signaling: passage for diverse biologic outcomes. Cell 164:349–352

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Thomas E, Saito T (2019) Special issue “IFN-Independent ISG expression and its role in antiviral cell-intrinsic innate immunity”. Viruses 11:981

    PubMed Central  Google Scholar 

  49. Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519–525

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Welsh RM, Bahl K, Marshall HD, Urban SL (2012) Type 1 interferons and antiviral CD8 T-cell responses. PLoS Pathogens 8:e1002352

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Müller L, Aigner P, Stoiber D (2017) Type I interferons and natural killer cell regulation in cancer. Front Immunol. 8:304

    PubMed  PubMed Central  Google Scholar 

  52. Huang X, Yang Y (2010) Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses. Expert Opin Ther Targets. 14:787–796. https://doi.org/10.1517/14728222.2010.501333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dai J, Megjugorac NJ, Amrute SB, Fitzgerald-Bocarsly P (2004) Regulation of IFN regulatory factor-7 and IFN-alpha production by enveloped virus and lipopolysaccharide in human plasmacytoid dendritic cells. J Immunol. 173:1535–1548. https://doi.org/10.4049/jimmunol.173.3.1535

    Article  CAS  PubMed  Google Scholar 

  54. Zheng D, Cao Q, Lee VW et al (2012) Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease. Kidney Int 81:892–902. https://doi.org/10.1038/ki.2011.471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cui W, Joshi NS, Liu Y, Meng H, Kleinstein SH, Kaech SM (2014) TLR4 ligands lipopolysaccharide and monophosphoryl lipid a differentially regulate effector and memory CD8 + T Cell differentiation. J Immunol. 192:4221–4232. https://doi.org/10.4049/jimmunol.1302569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank SPHCC animal facility for maintaining the animals in this study.

Funding

This study was supported by the Research fund of the National Research Foundation of Korea (NRF-2019R1C1C1003334 and NRF-2020R1A6A1A03044512).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JOJ; formal analysis, JOJ; data curation, WZ, SML, ST, MK and JOJ; original draft preparation, SML and JOJ; writing-review and editing, MK and JOJ. All authors approved the manuscript.

Corresponding author

Correspondence to Jun-O Jin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Lim, SM., Hwang, J. et al. Monophosphoryl lipid A-induced activation of plasmacytoid dendritic cells enhances the anti-cancer effects of anti-PD-L1 antibodies. Cancer Immunol Immunother 70, 689–700 (2021). https://doi.org/10.1007/s00262-020-02715-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02715-4

Keywords

Navigation