Skip to main content

Advertisement

Log in

Potent anti-myeloma efficacy of dendritic cell therapy in combination with pomalidomide and programmed death-ligand 1 blockade in a preclinical model of multiple myeloma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Dendritic cell (DC)-based vaccines are recognized as a promising immunotherapeutic strategy against cancer; however, the efficacy of immunotherapy with DCs is controlled via immune checkpoints, such as programmed death-ligand 1 (PD-L1). PD-L1 expressed on DC and tumor cells binds to programmed death-1 (PD-1) receptors on the activated T cells, which leads to the inhibition of cytotoxic T cells. Blocking of PD-L1 on DC may lead to improve the efficacy of DC therapy for cancer. Here we demonstrated that DC vaccination in combination with pomalidomide and programmed death-ligand 1 (PD-L1) blockade inhibited tumor growth of a multiple myeloma (MM) mouse model. DCs + pomalidomide with dexamethasone + PD-L1 blockade significantly inhibited immune immunosuppressive factors and promoted proportions of immune effector cells in the spleen and tumor microenvironment. Additionally, functional activities of cytotoxic T lymphocytes and NK cells in spleen were enhanced by DCs + pomalidomide with dexamethasone + PD-L1 blockade. Taken together, this study identifies a potential new therapeutic approach for the treatment of MM. These results also provide a foundation for the future development of immunotherapeutic modalities to inhibit tumor growth and restore immune function in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in 17th International Myeloma Workshop September 2019 at https://doi.org/10.1016/j.clml.2019.09.272 [51], and the 62nd American Society of Hematology Annual Meeting & Exposition 2019 at https://doi.org/10.1182/blood-2019-127964 [52].

Abbreviations

BM:

Bone marrow

CTLA4:

Cytotoxic T-lymphocyte-associated protein 4

CTLs:

Cytotoxic T lymphocytes

DC:

Dendritic cell

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethylsulfoxide

ELISA:

Enzyme-linked immunosorbent

ELISPOT:

Interferon (IFN)-γ enzyme-linked immunospot

FBS:

Fetal bovine serum

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

imDC:

Immature DC

IMiDs:

Immunomodulatory drugs

MM:

Multiple myeloma

MOPC:

Mineral-oil-induced plasmacytomas

MHC:

Major histocompatibility

MDSCs:

Myeloid-derived suppressor cells

mAbs:

Monoclonal antibodies

NK:

Natural killer

PD-1:

Programmed death-1

PD-L1:

Programmed death-ligand 1

PC:

Plasma cell

PBS:

Phosphate-buffered saline

PIs:

Proteasome inhibitors

PS:

Penicillin/streptomycin

rm:

Recombinant murine

rmIL:

Recombinant mouse interleukin

TNF-α:

Tumor necrosis factor-alpha

Th1:

T helper type 1

Tregs:

Regulatory T cells

TGF-β:

Transforming growth factor-beta

VEGF:

Vascular endothelial growth factor

References

  1. Jung SH, Lee HJ, Vo MC, Kim HJ, Lee JJ (2017) Immunotherapy for the treatment of multiple myeloma. Crit Rev Oncol Hematol 111:87–93

    PubMed  Google Scholar 

  2. Görgün GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J et al (2013) Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 121(15):2975–2987

    PubMed  PubMed Central  Google Scholar 

  3. Kane RC, Farrell AT, Sridhara R, Pazdur R (2006) United States food and drug administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 12(10):2955–2960

    CAS  PubMed  Google Scholar 

  4. Kumar SK, Gertz MA (2014) Risk adapted therapy for multiple myeloma: back to basics. Leuk Lymphoma 55(10):2219–2220

    PubMed  Google Scholar 

  5. Rosenblatt J, Avigan D (2008) Cellular immunotherapy for multiple myeloma. Best Pract Res Clin Haematol 21(3):559–577

    CAS  PubMed  Google Scholar 

  6. Vo MC, Yang S, Jung SH, Chu TH, Lee HJ, Lakshmi TJ et al (2018) Synergistic antimyeloma activity of dendritic cells and pomalidomide in a murine myeloma model. Front Immunol 9:1798

    PubMed  PubMed Central  Google Scholar 

  7. Vo MC, Lakshmi TJ, Jung SH, Cho D, Park HS, Chu TH, Lee HJ, Kim HJ, Kim SK, Lee JJ (2019) Cellular immunotherapy in multiple myeloma. Korean J Intern Med 34(5):954–965

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong CY, Lee HJ, Choi NR, Jung SH, Vo MC, Hoang MD, Kim HJ, Lee JJ (2016) Sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2) reduces the migratory capacity of CCL21-treated monocyte-derived dendritic cells. Exp Mol Med 48(8):e253

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim YS, P HJ, Park JH, Hong EJ, Jang GY, Jung ID, Han HD, Lee SH, Vo MC et al (2018) A novel function of API5 (apoptosis inhibitor 5), TLR4-dependent activation of antigen presenting cells. Oncoimmunology 7(10):e1472187

    PubMed  PubMed Central  Google Scholar 

  10. Park HJ, Jand GY, Kim YS, Park JH, Lee SE, Vo MC, Lee JJ et al (2019) A novel TLR4 binding protein, 40S ribosomal protein S3, has potential utility as an adjuvant in a dendritic cell-based vaccine. J Immunother Cancer 7(1):60

    PubMed  PubMed Central  Google Scholar 

  11. Vo MC, Nguyen-Pham TN, Lee HJ, Jung SH, Choi NR, Hoang MD, Kim HJ, Lee JJ (2017) Chaetocin enhances dendritic cell function via the induction of heat shock protein and cancer testis antigens in myeloma cells. Oncotarget 8(28):46047–46056

    PubMed  PubMed Central  Google Scholar 

  12. Choi NR, Lee HJ, Jung SH, Hong CY, Vo MC, Hoang MD, Kim HJ, Lee JJ (2015) Generation of potent dendritic cells with improved migration ability through p-cofilin and sarco/endoplasmic reticulum Ca(2+) transport ATPase 2 regulation. Cytotherapy 17(10):1421–1433

    CAS  PubMed  Google Scholar 

  13. Jung SH, Lee YK, Lee HJ, Choi NR, Vo MC, Hoang MD, Lim MS, Nguyen-Pham TN, Kim HJ, Lee JJ (2014) Dendritic cells loaded with myeloma cells pretreated with a combination of JSI-124 and bortezomib generate potent myeloma-specific cytotoxic T lymphocytes in vitro. Exp Hematol 42(4):274–281

    CAS  PubMed  Google Scholar 

  14. Vo MC, Jung SH, Chu TH, Lee HJ, Lakshmi TJ, Park HS et al (2018) Lenalidomide and programmed death-1 blockade synergistically enhances the effects of dendritic cell vaccination in a model of murine myeloma. Front Immunol 9:1370

    PubMed  PubMed Central  Google Scholar 

  15. Vo MC, Nguyen-Pham TN, Lee HJ, Jaya Lakshmi T, Yang S, Jung SH et al (2017) Combination therapy with dendritic cells and lenalidomide is an effective approach to enhance antitumor immunity in a mouse colon cancer model. Oncotarget 18(16):27252–27262

    Google Scholar 

  16. Nguyen-Pham TN, Jung SH, Vo MC, Thanh-Tran HT, Lee YK, Lee HJ, Choi NR, Hoang MD, Kim HJ, Lee JJ (2015) Lenalidomide synergistically enhances the effect of dendritic cell vaccination in a model of murine multiple myeloma. J Immunother 38(8):330–3399

    CAS  PubMed  Google Scholar 

  17. Nguyen-Pham TN, Lee YK, Kim HJ, Lee JJ (2012) Immunotherapy using dendritic cells against multiple myeloma: how to improve? Clin Dev Immunol 2012:397648

    PubMed  PubMed Central  Google Scholar 

  18. Hoang MD, Jung SH, Lee HJ, Lee YK, Nguyen-Pham TN, Choi NR et al (2015) Dendritic cell-based cancer immunotherapy against multiple myeloma: from bench to clinic. Chonnam Med J 51(1):1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK et al (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206(13):3015–3029

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Köhler M, Greil C, Hudecek M, Lonial S, Raje N, Wäsch R et al (2018) Current developments in immunotherapy in the treatment of multiple myeloma. Cancer 124(10):2075–2085

    PubMed  Google Scholar 

  21. Chanan-Khan AA, Swaika A, Paulus A, Kumar SK, Mikhael JR, Rajkumar SV et al (2013) Pomalidomide: the new immunomodulatory agent for the treatment of multiple myeloma. Blood Cancer J 3:e143

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mark TM, Coleman M, Niesvizky R (2014) Preclinical and clinical results with pomalidomide in the treatment of relapsed/refractory multiple myeloma. Leuk Res 38(5):517–524

    CAS  PubMed  Google Scholar 

  23. Richardson PG, Mark TM, Lacy MQ (2013) Pomalidomide: new immunomodulatory agent with potent antiproliferative effects. Crit Rev Oncol Hematol 88(Suppl 1):S36–44

    PubMed  Google Scholar 

  24. Bristol-myers squibb (NYSE: BMY) (2018) US. Food and drug administration accepts for priority review bristol-myers squibb’s application for empliciti (elotuzumab) plus pomalidomide and low-dose dexamethasone in patients with relapsed or refractory multiple myeloma. Link: https://news.bms.com/press-release/bristolmyers/us-food-and-drug-administration-accepts-priority-review-bristol-myers-squ. Accessed 25 Feb 2020

  25. Dong H, Strome S, Salomao DR, Tamura H, Hirano F, Flies DB et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800

    CAS  PubMed  Google Scholar 

  26. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526

    CAS  PubMed  Google Scholar 

  28. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA et al (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203(4):883–895

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A et al (2013) Marrow stromal cells induce B7–H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 27(2):464–472

    CAS  PubMed  Google Scholar 

  30. Jelinek T, Hajek R (2016) PD-1/PD-L1 inhibitors in multiple myeloma: the present and the future. Oncoimmunology 5(12):e1254856

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Benson DM Jr, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B et al (2010) The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 116(13):2286–2294

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Luptakova K, Rosenblatt J, Glotzbecker B, Mills H, Stroopinsky D, Kufe T et al (2013) Lenalidomide enhances anti-myeloma cellular immunity. Cancer Immunol Immunother 62(1):39–49

    CAS  PubMed  Google Scholar 

  33. Sedlarikova L, Kubiczkova L, Sevcikova S, Hajek R (2012) Mechanism of immunomodulatory drugs in multiple myeloma. Leuk Res 36(10):1218–1224

    CAS  PubMed  Google Scholar 

  34. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK (2017) PD-1 and PD-l1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561

    PubMed  PubMed Central  Google Scholar 

  35. Vo MC, Lee HJ, Kim JS, Hoang MD, Choi NR, Rhee JH et al (2015) Dendritic cell vaccination with a toll-like receptor agonist derived from mycobacteria enhances anti-tumor immunity. Oncotarget 6(32):33781–33790

    PubMed  PubMed Central  Google Scholar 

  36. Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5(4):296–306

    CAS  PubMed  Google Scholar 

  37. Nikitina EY, Gabrilovich D (2001) Combination of gamma-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: approach to treatment of advanced stage cancer. Int J Cancer 94(6):825–833

    CAS  PubMed  Google Scholar 

  38. Romano A, Conticello C, Cavalli M, Vetro C, La Fauci A, Parrinello NL et al (2014) Immunological dysregulation in multiple myeloma microenvironment. Biomed Res Int 2014:198539

    PubMed  PubMed Central  Google Scholar 

  39. Sounni NE, Noel A (2013) Targeting the tumor microenvironment for cancer therapy. Clin Chem 59(1):85–93

    CAS  PubMed  Google Scholar 

  40. Vo MC, Anh-Nguyen Thi T, Lee HJ, Nguyen-Pham TN, Jaya Lakshmi T, Jung SH et al (2017) Lenalidomide enhances the function of dendritic cells generated from patients with multiple myeloma. Exp Hematol 46:48–55

    CAS  PubMed  Google Scholar 

  41. He J, Hu Y, Hu M, Li B (2015) Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep 5:13110

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Boussiotis VA, Chatterjee P, Li L (2014) Biochemical signaling of PD-1 on T cells and its functional implications. Cancer J 20(4):265–271

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN et al (2017) PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 214(4):895–904

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kowanetz M, Zou W, Gettinger SN, Koeppen H, Kockx M, Schmid P et al (2018) Differential regulation of PD-L1 expression by immune and tumor cells in NSCLC and the response to treatment with atezolizumab (anti-PD-L1). Proc Natl Acad Sci USA 115(43):E10119–E10126

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tremblay-LeMay R, Rastgoo N, Chang H (2018) Modulating PD-L1 expression in multiple myeloma: an alternative strategy to target the PD-1/PD-L1 pathway. J Hematol Oncol 11(1):46

    PubMed  PubMed Central  Google Scholar 

  46. Lwin ST, Edwards CM, Silbermann R (2016) Preclinical animal models of multiple myeloma. Bonekey Rep 5:772

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tassone P, Neri P, Burger R, Di Martino MT, Leone E, Amodio N et al (2012) Mouse models as a translational platform for the development of new therapeutic agents in multiple myeloma. Curr Cancer Drug Targets 12(7):814–822

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Abdallah N, Kumar SK (2019) Daratumumab in untreated newly diagnosed multiple myeloma. Ther Adv Hematol 10:2040620719894871

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fancher KM, Bun EJ (2016) Elotuzumab: the first monoclonal antibody for the treatment of multiple myeloma. J Adv Pract Oncol 7(5):542–547

    PubMed  Google Scholar 

  50. Shah UA, Mailankody S (2020) CAR T and CAR NK cells in multiple myeloma: expanding the targets. Best Pract Res Clin Haematol 33(1):101141

    PubMed  PubMed Central  Google Scholar 

  51. Lee J-J, Jung S-H, Chu T-H, Vo M-C, Park H-S, Kim H-J (2019) Potent anti-myeloma efficacy of dendritic cell therapy in combination with pomalidomide and programmed death-ligand 1 blockade in a preclinical model of multiple myeloma 17th international myeloma workshop September 2019. Clin Lymp Myeloma Leuk 19(10):e163. https://doi.org/10.1016/j.clml.2019.09.272

    Article  Google Scholar 

  52. Lee J-J, Chu T-H, Vo M-C, Park H-S, Lakshmi TJ, Ahn S-Y, Song G-Y, Jung S-H, Kim H-J (2019) A combination therapy with dendritic cells, pomalidomide and programmed death-ligand 1 blockade exerts a potent antitumor immunity in a murine model of multiple myeloma. 2019 by the American society of hematology. Blood. https://doi.org/10.1182/blood-2019-127964(134 Supplement_1: 1819)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Je-jung Lee has received honoraria for speaking at the 17th international myeloma workshop september 2019 [51], and the 62nd American Society of Hematology Annual Meeting and Exposition 2019 [52].

Funding

This research was supported by grants (2018R1A5A2024181, NRF-2018R1C1B5041536, NRF-2020R1A2C2010098) from the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (MEST), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

MCV, THC, SHJ, and JJL designed the study. MCV, THC, HSP, and TJL performed the research and analyzed the data. MCV and JJL wrote the article. JJL, SHJ, and HJK contributed intellectually to the research.

Corresponding authors

Correspondence to Sung-Hoon Jung or Je-Jung Lee.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, TH., Vo, MC., Park, HS. et al. Potent anti-myeloma efficacy of dendritic cell therapy in combination with pomalidomide and programmed death-ligand 1 blockade in a preclinical model of multiple myeloma. Cancer Immunol Immunother 70, 31–45 (2021). https://doi.org/10.1007/s00262-020-02654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02654-0

Keywords

Navigation