Skip to main content

Advertisement

Log in

Patterns of progression in patients treated for immuno-oncology antibodies combination

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

New patterns of progression under immune-oncology (IO) antibodies (mAb) have been described such as pseudoprogression. Except for melanoma, variations between studies reveal difficulties to establish their prevalence.

Methods

This retrospective study enrolled patients participating in IO phase I trials at Gustave Roussy cancer center for solid tumors excluding melanoma. Radiological assessment according to iRECIST was correlated with prospectively registered patient characteristics and outcomes. Pseudoprogression (PsPD) was defined as RECIST-defined progression followed by stabilization or decrease at the next imaging, and dissociated response (DisR) as concomitant decrease in some tumor lesions and increase in others at a same timepoint.

Results

Among 360 patients included, 74% received IO mAb combination: 45% with another IO mAb, 20% with targeted therapy and 10% with radiotherapy. The overall response rate was 19.7%. PsPD were observed in 10 (2.8%) patients and DisR in 12 (3.3%) patients. Atypical responses (AR), including PsPD and DisR, were not associated with any patient’s baseline characteristics. Compare with typical responder patients, patients experiencing AR presented a shorter iPFS (HR 0.34; p < 0.001) and OS (HR 0.27; p = 0.026). Among the 203 patients who progressed in 12 weeks, 80 (39.4%) patients were treated beyond progression. PD was confirmed in 80% of cases, while 10% of patients presented a response.

Conclusion

Pseudoprogression and dissociated response are uncommon patterns of progression. Their prevalence should be balanced with the rate of real progressing patients treated beyond progression. Prognosis or on-treatment biomarkers are needed to identify early patients who will benefit from immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CTLA-4:

Cytotoxic T-lymphocyte antigen-4

DisR:

Dissociated response

FastPD:

Fast progression

GRIm score:

Gustave Roussy immune score

HPD:

Hyperprogressive disease

HR:

Hazard ratios

iCPD:

Confirmed progressive disease

IO:

Immune-oncology

iUPD:

Unconfirmed progressive disease

LIPI score:

Lung immune prognostic index

mAb:

Antibodies

NSCLC:

Non-small-cell lung carcinoma

ORR:

Overall response rate

OS:

Overall survival

PD:

Progression

PD-1:

Programmed death 1

PDL-1:

Programmed death ligand 1

PFS:

Progression-free survival

PsPD:

Pseudoprogression

RECIST:

Response evaluation criteria in solid tumours

RMH score:

Royal Marsden Hospital score

References

  1. Hirsch L, Zitvogel L, Eggermont A, Marabelle A (2019) PD-Loma: a cancer entity with a shared sensitivity to the PD-1/PD-L1 pathway blockade. Br J Cancer 120:3–5. https://doi.org/10.1038/s41416-018-0294-4

    Article  PubMed  Google Scholar 

  2. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 6:8. https://doi.org/10.1186/s40425-018-0316-z

    Article  PubMed  PubMed Central  Google Scholar 

  3. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  CAS  Google Scholar 

  4. Nishino M (2018) Tumor response assessment for precision cancer therapy: response evaluation criteria in solid tumors and beyond. Am Soc Clin Oncol Educ Book. https://doi.org/10.1200/EDBK_201441

    Article  PubMed  Google Scholar 

  5. Wolchok JD, Hoos A, O’Day S et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420. https://doi.org/10.1158/1078-0432.CCR-09-1624

    Article  CAS  PubMed  Google Scholar 

  6. Chiou VL, Burotto M (2015) Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 33:3541–3543. https://doi.org/10.1200/JCO.2015.61.6870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferté C, Marabelle A (2017) iRECIST: a clarification of tumour response assessment in the immunotherapy era. Eur J Cancer 77:165–167. https://doi.org/10.1016/j.ejca.2017.02.015

    Article  PubMed  Google Scholar 

  8. Borcoman E, Kanjanapan Y, Champiat S et al (2019) Novel patterns of response under immunotherapy. Ann Oncol Off J Eur Soc Med Oncol 30:385–396. https://doi.org/10.1093/annonc/mdz003

    Article  CAS  Google Scholar 

  9. Champiat S, Ferrara R, Massard C et al (2018) Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat Rev Clin Oncol 15:748–762. https://doi.org/10.1038/s41571-018-0111-2

    Article  CAS  PubMed  Google Scholar 

  10. Massard C, Segal NH, Cho DC et al (2018) 439P prospective validation of prognostic scores to improve patient selection for immuno-oncology trials. Ann Oncol. https://doi.org/10.1093/annonc/mdy279.426

    Article  PubMed  Google Scholar 

  11. Seymour L, Bogaerts J, Perrone A et al (2017) iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol 18:e143–e152. https://doi.org/10.1016/S1470-2045(17)30074-8

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hodi FS, Hwu W-J, Kefford R et al (2016) Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J Clin Oncol 34:1510–1517. https://doi.org/10.1200/JCO.2015.64.0391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arkenau H-T, Olmos D, Ang JE et al (2008) Clinical outcome and prognostic factors for patients treated within the context of a phase I study: the Royal Marsden Hospital experience. Br J Cancer 98:1029–1033. https://doi.org/10.1038/sj.bjc.6604218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bigot F, Castanon E, Baldini C et al (2017) Prospective validation of a prognostic score for patients in immunotherapy phase I trials: the Gustave Roussy Immune Score (GRIm-Score). Eur J Cancer 84:212–218. https://doi.org/10.1016/j.ejca.2017.07.027

    Article  CAS  PubMed  Google Scholar 

  15. Mezquita L, Auclin E, Ferrera R et al (2018) Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol 4:351–357. https://doi.org/10.1001/jamaoncol.2017.4771

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gandara DR, Reck M, Morris S et al (2018) LBA1Fast progression in patients treated with a checkpoint inhibitor (cpi) vs chemotherapy in OAK, a phase III trial of atezolizumab (atezo) vs docetaxel (doc) in 2L + NSCLC. Ann Oncol. https://doi.org/10.1093/annonc/mdy511

    Article  PubMed  PubMed Central  Google Scholar 

  17. Borcoman E, Nandikolla A, Long G et al (2018) Patterns of response and progression to immunotherapy. Am Soc Clin Oncol Educ Book. https://doi.org/10.1200/EDBK_200643

    Article  PubMed  Google Scholar 

  18. Powles T, Eder JP, Fine GD et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562. https://doi.org/10.1038/nature13904

    Article  CAS  PubMed  Google Scholar 

  19. Queirolo P, Spagnolo F (2017) Atypical responses in patients with advanced melanoma, lung cancer, renal-cell carcinoma and other solid tumors treated with anti-PD-1 drugs: a systematic review. Cancer Treat Rev 59:71–78. https://doi.org/10.1016/j.ctrv.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  20. Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N Engl J Med 373:123–135. https://doi.org/10.1056/NEJMoa1504627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishino M, Ramaiya NH, Chambers ES et al (2016) Immune-related response assessment during PD-1 inhibitor therapy in advanced non-small-cell lung cancer patients. J Immunother Cancer 4:84. https://doi.org/10.1186/s40425-016-0193-2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ferrara R, Mezquita L, Texier M et al (2018) Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol 4:1543. https://doi.org/10.1001/jamaoncol.2018.3676

    Article  PubMed  PubMed Central  Google Scholar 

  23. Di Giacomo AM, Danielli R, Guidoboni M et al (2009) Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases. Cancer Immunol Immunother CII 58:1297–1306. https://doi.org/10.1007/s00262-008-0642-y

    Article  CAS  PubMed  Google Scholar 

  24. de Velasco G, Krajewski KM, Albiges L et al (2016) Radiologic heterogeneity in responses to anti-PD-1/PD-L1 therapy in metastatic renal cell carcinoma. Cancer Immunol Res 4:12–17. https://doi.org/10.1158/2326-6066.CIR-15-0197

    Article  CAS  PubMed  Google Scholar 

  25. Tazdait M, Mezquita L, Lahmar J et al (2018) Patterns of responses in metastatic NSCLC during PD-1 or PDL-1 inhibitor therapy: comparison of RECIST 1.1, irRECIST and iRECIST criteria. Eur J Cancer 88:38–47. https://doi.org/10.1016/j.ejca.2017.10.017

    Article  CAS  PubMed  Google Scholar 

  26. Binnewies M, Roberts EW, Kersten K et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–550. https://doi.org/10.1038/s41591-018-0014-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giaccone G, Kim C, Thompson J et al (2018) Pembrolizumab in patients with thymic carcinoma: a single-arm, single-centre, phase 2 study. Lancet Oncol 19:347–355. https://doi.org/10.1016/S1470-2045(18)30062-7

    Article  CAS  PubMed  Google Scholar 

  28. Hendriks LEL, Henon C, Auclin E et al (2019) Outcome of patients with non-small cell lung cancer and brain metastases treated with checkpoint inhibitors. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 14:1244–1254. https://doi.org/10.1016/j.jtho.2019.02.009

    Article  CAS  Google Scholar 

  29. Klemen ND, Wang M, Feingold PL et al (2019) Patterns of failure after immunotherapy with checkpoint inhibitors predict durable progression-free survival after local therapy for metastatic melanoma. J Immunother Cancer 7:196. https://doi.org/10.1186/s40425-019-0672-3

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kurra V, Sullivan RJ, Gainor JF et al (2016) Pseudoprogression in cancer immunotherapy: rates, time course and patient outcomes. J Clin Oncol 34:6580. https://doi.org/10.1200/JCO.2016.34.15_suppl.6580

    Article  Google Scholar 

  31. Fujimoto D, Yoshioka H, Kataoka Y et al (2019) Pseudoprogression in previously treated patients with non-small cell lung cancer who received nivolumab monotherapy. J Thorac Oncol 14:468–474. https://doi.org/10.1016/j.jtho.2018.10.167

    Article  CAS  PubMed  Google Scholar 

  32. Gauci M-L, Lanoy E, Champiat S et al (2019) Long-term survival in patients responding to anti-PD-1/PD-L1 therapy and disease outcome upon treatment discontinuation. Clin Cancer Res Off J Am Assoc Cancer Res 25:946–956. https://doi.org/10.1158/1078-0432.CCR-18-0793

    Article  Google Scholar 

  33. Champiat S, Dercle L, Ammari S et al (2017) Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 23:1920–1928. https://doi.org/10.1158/1078-0432.CCR-16-1741

    Article  CAS  PubMed  Google Scholar 

  34. Kato S, Goodman A, Walavalkar V et al (2017) Hyperprogressors after Immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res 23:4242–4250. https://doi.org/10.1158/1078-0432.CCR-16-3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saâda-Bouzid E, Defaucheux C, Karabajakian A et al (2017) Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol 28:1605–1611. https://doi.org/10.1093/annonc/mdx178

    Article  PubMed  Google Scholar 

  36. Beaver JA, Hazarika M, Mulkey F et al (2018) Patients with melanoma treated with an anti-PD-1 antibody beyond RECIST progression: a US Food and Drug Administration pooled analysis. Lancet Oncol 19:229–239. https://doi.org/10.1016/S1470-2045(17)30846-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gyawali B, Hey SP, Kesselheim AS (2018) A comparison of response patterns for progression-free survival and overall survival following treatment for cancer with PD-1 inhibitors: a meta-analysis of correlation and differences in effect sizes. JAMA Netw Open 1:e180416. https://doi.org/10.1001/jamanetworkopen.2018.0416

    Article  PubMed  PubMed Central  Google Scholar 

  38. Borcoman E, Kanjanapan Y, Champiat S et al (2019) Novel patterns of response under immunotherapy. Ann Oncol. https://doi.org/10.1093/annonc/mdz003

    Article  PubMed  Google Scholar 

  39. Cabel L, Proudhon C, Romano E et al (2018) Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy. Nat Rev Clin Oncol 15:639–650. https://doi.org/10.1038/s41571-018-0074-3

    Article  CAS  PubMed  Google Scholar 

  40. Lee JH, Long GV, Menzies AM et al (2018) Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2017.5332

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tan AC, Emmett L, Lo S et al (2018) FDG-PET response and outcome from anti-PD-1 therapy in metastatic melanoma. Ann Oncol. https://doi.org/10.1093/annonc/mdy330

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun R, Limkin EJ, Vakalopoulou M et al (2018) A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol 19:1180–1191. https://doi.org/10.1016/S1470-2045(18)30413-3

    Article  CAS  PubMed  Google Scholar 

  43. Shrimali RK, Ahmad S, Verma V et al (2017) Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res 5:755–766. https://doi.org/10.1158/2326-6066.CIR-17-0292

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the patients, their families who participated in the trials. We thank also the ESMO annual meeting abstract.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conception and study design: ABT, CB, CM. Acquisition, analysis, or interpretation of data: ABT, CB, EC, CM, SA. Statistical analysis: ABT, EC. Drafting and revising the manuscript: ABT, CB, EC, AH, SPV, JMM, AM, JCS, CM, SA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Christophe Massard.

Ethics declarations

Ethical approval

The study was conducted in accordance with the principles of the Helsinki Declaration. All patients included in this retrospective study were treated in clinical trials approved by the French health agency ANSM and an ethical committee. Informed consent was obtained from all participants in the study.

Conflict of interest

CB: personal fees: Sanofi, BMS, Abbvie. EC declares travel grants from Astra Zeneca, BMS, MSD, and Roche and consulting/advisory role for Astra Zeneca, BMS, MSD, and Roche, all outside of the scope of this work. PM: Research Grants from Astrazeneca, BMS, Boehringer Ingelheim, Janssen Cilag, Merck, Novartis, Pfizer, Roche, Sanofi. Non-financial support (drug supplied) from Astrazeneca, Bayer, BMS, Boringher Ingelheim, Johnson & Johnson, Lilly, Medimmune, Merck, NH TherAGuiX, Pfizer, Roche. AH: Principal/sub Investigator of Clinical Trials for A bbvie, A gios P harmaceuticals, Amgen, Argen X Bvba, Arno Therapeutics, Astex Pharmaceuticals, Astra Zeneca, Aveo, Bayer Healthcare Ag, Bbb Technologies Bv, Blueprint Medicines, Boehringer Ingelheim, Bristol Myers Squibb, Celgene Corporation, Chugai Pharmaceutical Co., Cl ovis Oncology, Daiichi Sankyo, Debiopharm S.A., Eisai, Eli Lilly, Exelixis, Forma, Gamamabs, Genentech, Inc., Glaxosmithkline, Gristone Oncology, H3 Biomedicine, Inc, Hoffmann La Roche Ag, Innate Pharma, Iris Servier, Janssen Cilag, Kyowa Kirin Pharm. Dev. Dev., Inc., Loxo Oncology, Lytix Biopharma As, Medimmune, Menarini Merck Serono, Merck Sharp & Dohme Chibret, Merrimack Pharmaceuticals, Merus, Millennium Pharmaceuticals, Nanobiotix, Nektar Therapeutics, Novartis Pharma, Octimet Oncology Nv, Oncoeth ix, Onyx Therapeutics, Orion Pharma, Oryzon Genomics, Pfizer, Pharma Mar, Pierre Fabre, Roche, Sanofi Aventis, Taiho Pharma, Tesaro, Inc, Xencor. Consultant/Advisory role for Amgen, Spectrum Pharmaceuticals, Lilly. Travel and accommodation expenses from Servier, Amgen, Lilly. Courses, trainings for Bayer. SPV: Research Grants from Astrazeneca, BMS, Boehringer Ingelheim, Janssen Cilag, Merck, Novartis, Pfizer, Roche, Sanofi; As part of her research activity, SPV has received research funding from Boehringer Ingelheim, Roche and Merck KGaA for research projects unrelated to this manuscript. SPV has participated to advisory boards for Merck KGaA and has benefited from non-financial support (travel paid and congress registration) for attending symposia from AstraZeneca. JMM personal fees: Bristol-Myers Squibb, AstraZeneca, Janssen. non-financial support: AstraZeneca, Roche, Novartis, Gilead, Celgene, Bristol-Myers Squibb. VR: consultant Gilead, Infinity, MSD, BMS, Epizyme, Nanostring, Incyte, Roche, AstraZeneca, Servier. Research funding from ArgenX. Dr Varga reported advisory board membership for Bristol-Myers Squibb, Pfizer, Roche, AstraZeneca, and Celgene. Dr Champiat reported honoraria from AstraZeneca, Bristol-Myers Squibb, Janssen, MSD, Novartis, and Roche. Dr Marabelle reported scientific advisory board membership for Merck Serono, eTheRNA, Lytix, Kyowa Kirin, Bayer, Novartis, BMS, Symphogen, Genmab, Amgen, Biothera, Nektar, GlaxoSmithKline, Oncovir, Pfizer, Seattle Genetics, Flexus Bio, Roche/Genentech, OSE, Transgene, and Gritstone. JCS: Over the last 5 years, Dr Soria has received consultancy fees from AstraZeneca, Astex, Clovis, GSK, GamaMabs, Lilly, MSD, Mission Therapeutics, Merus, Pfizer, PharmaMar, Pierre Fabre, Roche/Genentech, Sanofi, Servier, Symphogen, and Takeda. Dr Soria has been a full-time employee of AstraZeneca since September 2017. He is a shareholder of AstraZeneca and Gritstone. CM: Consultant/AdvisoryfeesfromAmgen, Astellas, Astra Zeneca, Bayer, BeiGene, BMS, Celgene, Debiopharm, Genentech, Ipsen, Janssen, Lilly, MedImmune, MSD, Novartis, Pfizer, Roche, Sanofi, Orion. Principal/sub-Investigatorof ClinicalTrials for Abbvie, Aduro, Agios, Amgen, Argen-x, Astex, AstraZeneca, Aveopharmaceuticals, Bayer, Beigene, Blueprint, BMS, BoeringerIngelheim, Celgene, Chugai, Clovis, DaiichiSankyo, Debiopharm, Eisai, Eos, Exelixis, Forma, Gamamabs, Genentech, Gortec, GSK, H3 biomedecine, Incyte, InnatePharma, Janssen, Kura Oncology, Kyowa, Lilly, Loxo, Lysarc, LytixBiopharma, Medimmune, Menarini, Merus, MSD, Nanobiotix, NektarTherapeutics, Novartis, Octimet, Oncoethix, OncopeptidesAB, Orion, Pfizer, Pharmamar, Pierre Fabre, Roche, Sanofi, Servier, Sierra Oncology, Taiho, Takeda, Tesaro, Xencor. The rest of the authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard-Tessier, A., Baldini, C., Castanon, E. et al. Patterns of progression in patients treated for immuno-oncology antibodies combination. Cancer Immunol Immunother 70, 221–232 (2021). https://doi.org/10.1007/s00262-020-02647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02647-z

Keywords

Navigation