Skip to main content

Immune checkpoint inhibitors reverse tolerogenic mechanisms induced by melanoma targeted radionuclide therapy


In line with the ongoing phase I trial (NCT03784625) dedicated to melanoma targeted radionuclide therapy (TRT), we explore the interplay between immune system and the melanin ligand [131I]ICF01012 alone or combined with immunotherapy (immune checkpoint inhibitors, ICI) in preclinical models. Here we demonstrate that [131I]ICF01012 induces immunogenic cell death, characterized by a significant increase in cell surface-exposed annexin A1 and calreticulin. Additionally, [131I]ICF01012 increases survival in immunocompetent mice, compared to immunocompromised (29 vs. 24 days, p = 0.0374). Flow cytometry and RT-qPCR analyses highlight that [131I]ICF01012 induces adaptive and innate immune cell recruitment in the tumor microenvironment. [131I]ICF01012 combination with ICIs (anti-CTLA-4, anti-PD-1, anti-PD-L1) has shown that tolerance is a main immune escape mechanism, whereas exhaustion is not present after TRT. Furthermore, [131I]ICF01012 and ICI combination has systematically resulted in a prolonged survival (p < 0.0001) compared to TRT alone. Specifically, [131I]ICF01012 + anti-CTLA-4 combination significantly increases survival compared to anti-CTLA-4 alone (41 vs. 26 days; p = 0.0011), without toxicity. This work represents the first global characterization of TRT-induced modifications of the antitumor immune response, demonstrating that tolerance is a main immune escape mechanism and that combining TRT and ICI is promising.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5





Damage-associated molecular pattern molecules


External beam radiation therapy


Immune checkpoint inhibitors


Natural killer


Targeted radionuclide therapy


  1. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortes ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichtenstein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak AM, Lohr J, Landau DA, Wu CJ, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll SA, Mora J, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel SB, Roberts CWM, Biegel JA, Stegmaier K, Bass AJ, Garraway LA, Meyerson M, Golub TR, Gordenin DA, Sunyaev S, Lander ES, Getz G (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Lee N, Zakka LR, Mihm MC Jr, Schatton T (2016) Tumour-infiltrating lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology 48(2):177–187.

    Article  PubMed  Google Scholar 

  3. Portella L, Scala S (2019) Ionizing radiation effects on the tumor microenvironment. Semin Oncol.

    Article  PubMed  Google Scholar 

  4. Mason R, Au L, Ingles Garces A, Larkin J (2019) Current and emerging systemic therapies for cutaneous metastatic melanoma. Expert Opin Pharmacother 20(9):1135–1152.

    Article  PubMed  Google Scholar 

  5. Tai X, Van Laethem F, Pobezinsky L, Guinter T, Sharrow SO, Adams A, Granger L, Kruhlak M, Lindsten T, Thompson CB, Feigenbaum L, Singer A (2012) Basis of CTLA-4 function in regulatory and conventional CD4(+) T cells. Blood 119(22):5155–5163.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. McDermott DF, Atkins MB (2013) PD-1 as a potential target in cancer therapy. Cancer Med 2(5):662–673.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Lauden L, Siewiera J, Boukouaci W, Ramgolam K, Mourah S, Lebbe C, Charron D, Aoudjit F, Jabrane-Ferrat N, Al-Daccak R (2014) TGF-beta-induced (TGFBI) protein in melanoma: a signature of high metastatic potential. J Invest Dermatol 134(6):1675–1685.

    CAS  Article  PubMed  Google Scholar 

  8. Goehrig D, Nigri J, Samain R, Wu Z, Cappello P, Gabiane G, Zhang X, Zhao Y, Kim IS, Chanal M, Curto R, Hervieu V, de La Fouchardiere C, Novelli F, Milani P, Tomasini R, Bousquet C, Bertolino P, Hennino A (2019) Stromal protein betaig-h3 reprogrammes tumour microenvironment in pancreatic cancer. Gut 68(4):693–707.

    CAS  Article  PubMed  Google Scholar 

  9. Bauer CA (2019) Immunosuppressive betaig-h3 links tumour stroma and dysfunctional T cells in pancreatic cancer. Gut 68(4):581.

    CAS  Article  PubMed  Google Scholar 

  10. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, Herati RS, Mansfield KD, Patsch D, Amaravadi RK, Schuchter LM, Ishwaran H, Mick R, Pryma DA, Xu X, Feldman MD, Gangadhar TC, Hahn SM, Wherry EJ, Vonderheide RH, Minn AJ (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520(7547):373–377.

    CAS  Article  PubMed  Google Scholar 

  11. Levy A, Massard C, Soria JC, Deutsch E (2016) Concurrent irradiation with the anti-programmed cell death ligand-1 immune checkpoint blocker durvalumab: Single centre subset analysis from a phase 1/2 trial. Eur J Cancer 68:156–162.

    CAS  Article  PubMed  Google Scholar 

  12. Roger A, Finet A, Boru B, Beauchet A, Mazeron JJ, Otzmeguine Y, Blom A, Longvert C, de Maleissye MF, Fort M, Funck-Brentano E, Saiag P (2018) Efficacy of combined hypo-fractionated radiotherapy and anti-PD-1 monotherapy in difficult-to-treat advanced melanoma patients. Oncoimmunology 7(7):e1442166.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pitt JM, Kroemer G, Zitvogel L (2017) Immunogenic and Non-immunogenic Cell Death in the Tumor Microenvironment. Adv Exp Med Biol 1036:65–79.

    CAS  Article  PubMed  Google Scholar 

  14. Baracco EE, Stoll G, Van Endert P, Zitvogel L, Vacchelli E, Kroemer G (2019) Contribution of annexin A1 to anticancer immunosurveillance. OncoImmunology.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu Y, Pfeifer AK, Myschetzky R, Garbyal RS, Rasmussen P, Knigge U, Bzorek M, Kristensen MH, Kjaer A (2013) Induction of anti-tumor immune responses by peptide receptor radionuclide therapy with (177)Lu-DOTATATE in a murine model of a human neuroendocrine tumor. Diagnostics (Basel) 3(4):344–355.

    CAS  Article  Google Scholar 

  16. Keisari Y, Hochman I, Confino H, Korenstein R, Kelson I (2014) Activation of local and systemic anti-tumor immune responses by ablation of solid tumors with intratumoral electrochemical or alpha radiation treatments. Cancer Immunol Immunother 63(1):1–9.

    CAS  Article  PubMed  Google Scholar 

  17. Chakraborty M, Gelbard A, Carrasquillo JA, Yu S, Mamede M, Paik CH, Camphausen K, Schlom J, Hodge JW (2008) Use of radiolabeled monoclonal antibody to enhance vaccine-mediated antitumor effects. Cancer Immunol Immunother 57(8):1173–1183.

    CAS  Article  PubMed  Google Scholar 

  18. Hernandez R, Walker KL, Grudzinski JJ, Aluicio-Sarduy E, Patel R, Zahm CD, Pinchuk AN, Massey CF, Bitton AN, Brown RJ, Sondel PM, Morris ZS, Engle JW, Capitini CM, Weichert JP (2019) (90)Y-NM600 targeted radionuclide therapy induces immunologic memory in syngeneic models of T-cell Non-Hodgkin's Lymphoma. Commun Biol 2:79.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Choi J, Beaino W, Fecek R, Fabian K, Laymon CM, Kurland B, Storkus W, Anderson CJ (2018) Combination treatment of VLA-4 targeted radionuclide therapy and immunotherapy in a mouse model of melanoma. J Nucl Med.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chezal JM, Papon J, Labarre P, Lartigue C, Galmier MJ, Decombat C, Chavignon O, Maublant J, Teulade JC, Madelmont JC, Moins N (2008) Evaluation of radiolabeled (hetero)aromatic analogues of N-(2-diethylaminoethyl)-4-iodobenzamide for imaging and targeted radionuclide therapy of melanoma. J Med Chem 51(11):3133–3144.

    CAS  Article  PubMed  Google Scholar 

  21. Bonnet M, Mishellany F, Papon J, Cayre A, Penault-Llorca F, Madelmont JC, Miot-Noirault E, Chezal JM, Moins N (2010) Anti-melanoma efficacy of internal radionuclide therapy in relation to melanin target distribution. Pigment Cell Melanoma Res 23(5):e1–11.

    CAS  Article  PubMed  Google Scholar 

  22. Bonnet-Duquennoy M, Papon J, Mishellany F, Labarre P, Guerquin-Kern JL, Wu TD, Gardette M, Maublant J, Penault-Llorca F, Miot-Noirault E, Cayre A, Madelmont JC, Chezal JM, Moins N (2009) Targeted radionuclide therapy of melanoma: anti-tumoural efficacy studies of a new 131I labelled potential agent. Int J Cancer 125(3):708–716.

    CAS  Article  PubMed  Google Scholar 

  23. Viallard C, Perrot Y, Boudhraa Z, Jouberton E, Miot-Noirault E, Bonnet M, Besse S, Mishellany F, Cayre A, Maigne L, Rbah-Vidal L, D'Incan M, Cachin F, Chezal JM, Degoul F (2015) [(1)(2)(3)I]ICF01012 melanoma imaging and [(1)(3)(1)I]ICF01012 dosimetry allow adapted internal targeted radiotherapy in preclinical melanoma models. Eur J Dermatol 25(1):29–35.

    CAS  Article  PubMed  Google Scholar 

  24. Degoul F, Borel M, Jacquemot N, Besse S, Communal Y, Mishellany F, Papon J, Penault-Llorca F, Donnarieix D, Doly M, Maigne L, Miot-Noirault E, Cayre A, Cluzel J, Moins N, Chezal JM, Bonnet M (2013) In vivo efficacy of melanoma internal radionuclide therapy with a 131I-labelled melanin-targeting heteroarylcarboxamide molecule. Int J Cancer 133(5):1042–1053.

    CAS  Article  PubMed  Google Scholar 

  25. Akil H, Rouanet J, Viallard C, Besse S, Auzeloux P, Chezal JM, Miot-Noirault E, Quintana M, Degoul F (2019) Targeted radionuclide therapy decreases melanoma lung invasion by modifying epithelial-mesenchymal transition-like mechanisms. Transl Oncol 12(11):1442–1452.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Viallard C, Chezal JM, Mishellany F, Ranchon-Cole I, Pereira B, Herbette A, Besse S, Boudhraa Z, Jacquemot N, Cayre A, Miot-Noirault E, Sun JS, Dutreix M, Degoul F (2016) Targeting DNA repair by coDbait enhances melanoma targeted radionuclide therapy. Oncotarget 7(11):12927–12936.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Raitanen M, Rantanen V, Kulmala J, Helenius H, Grenman R, Grenman S (2002) Supra-additive effect with concurrent paclitaxel and cisplatin in vulvar squamous cell carcinoma in vitro. Int J Cancer 100(2):238–243.

    CAS  Article  PubMed  Google Scholar 

  28. Yu JW, Bhattacharya S, Yanamandra N, Kilian D, Shi H, Yadavilli S, Katlinskaya Y, Kaczynski H, Conner M, Benson W, Hahn A, Seestaller-Wehr L, Bi M, Vitali NJ, Tsvetkov L, Halsey W, Hughes A, Traini C, Zhou H, Jing J, Lee T, Figueroa DJ, Brett S, Hopson CB, Smothers JF, Hoos A, Srinivasan R (2018) Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments. PLoS ONE 13(11):e0206223.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Schaue D, Ratikan JA, Iwamoto KS, McBride WH (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83(4):1306–1310.

    CAS  Article  PubMed  Google Scholar 

Download references


We are grateful to C.VACCHIAS from confocal imaging platform (CLIC) and to C.SOUBEYRAND-DAMON from histopathology platform (ANIPATH) for their pertinent advices. We thank M.GEMBARA for his kind proofreading of the English manuscript.


This study was supported by the SFD – French Society for Dermatology and by the Ligue Régionale Contre le Cancer. J. ROUANET is supported by a doctoral fellowship granted by the SFD. H. AKIL was supported by a fellowship from the Auvergne Regional council and the European Community. A. Hennino is supported by INSERM TRANSFERT, Fondation Bristol-Meyers Squibb and La Ligue Régionale Contre le Cancer.

Author information

Authors and Affiliations



JR, AH, SM, MD, FD and POR contributed to the study conception and design. Material preparation, data collection and analysis were performed by JR, VB, HA, SB, PA and SD. BP performed statistical analyses. The first draft of the manuscript was written by JR, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jacques Rouanet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Experimentations on mice were in conformity with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (8th edition, 2011) and were approved by local Ethic committee of Clermont-Ferrand (C2E2A No. 002) and French Ministry of Education and Research (Approval No. 12211). This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 517 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rouanet, J., Benboubker, V., Akil, H. et al. Immune checkpoint inhibitors reverse tolerogenic mechanisms induced by melanoma targeted radionuclide therapy. Cancer Immunol Immunother 69, 2075–2088 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Targeted radionuclide therapy
  • Metastatic melanoma
  • Immune checkpoint inhibitor
  • Tolerance
  • Melanin
  • Anti-βig-h3