Abstract
Introduction
The importance of immune tumor microenvironment in the prognosis of patients with head and neck squamous carcinomas (HNSCC) is increasingly recognized. We analyzed the prognostic relevance of PD-L1 and PD-1 expressions in relation to the infiltration by CD8+ and FOXP3+ tumor-infiltrating lymphocytes (TILs).
Methods
Samples from 372 surgically treated HPV-negative HNSCC patients were evaluated by immunohistochemistry for PD-L1 expression [both tumor proportion score (TPS) and combined proportion score (CPS)], PD-1 expression in immune cells, and density of infiltrating CD8+ and FOXP3+ TILs. PD-L1 expression and CD8+ TIL density were combined to establish the type of tumor microenvironment.
Results
29.5% cases exhibited PD-L1 TPS positivity (≥ 1%), whereas PD-L1 CPS positivity (≥ 1%) was observed in 40% cases. 47.5% cases showed positive PD-1 expression (≥ 1%). PD-L1 and PD-1 positivity correlated with a high density of both CD8+ and FOXP3+ TILs. In univariate analysis, PD-L1 TPS positivity (P = 0.026), PD-L1 CPS positivity (P = 0.004), high density of CD8+ TIL (P = 0.001), and high density of FOXP3+ TIL (P = 0.004) were associated with a better disease-specific survival (DSS). However, in multivariate analysis, only high density of CD8+ TIL was associated with a better DSS (P = 0.002). The type of tumor microenvironment correlated with DSS (P = .008), with the better DSS observed in cases with type I (PD-L1 CPS positivity and high density of CD8+ TIL).
Conclusions
High infiltration by CD8+ TIL is associated with better survival outcomes. Positive PD-L1 expression correlates with a high infiltration by TILs, explaining its association with better prognosis.
Similar content being viewed by others
References
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013
Ferris RL (2015) Immunology and immunotherapy of head and neck cancer. J Clin Oncol 33:3293–3304. https://doi.org/10.1200/JCO.2015.61
Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239
Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 6:8. https://doi.org/10.1186/s40425-018-0316-z
Cohen EEW, Bell RB, Bifulco CB, Burtness B, Gillison ML, Harrington KJ, Le QT, Lee NY, Leidner R, Lewis RL, Licitra L, Mehanna H, Mell LK, Raben A, Sikora AG, Uppaluri R, Whitworth F, Zandberg DP, Ferris RL (2019) The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J Immunother Cancer 7:184. https://doi.org/10.1186/s40425-019-0662-5
Carbognin L, Pilotto S, Milella M, Vaccaro V, Brunelli M, Caliò A, Cuppone F, Sperduti I, Giannarelli D, Chilosi M, Bronte V, Scarpa A, Bria E, Tortora G (2015) Differential activity of Nivolumab, Pembrolizumab and MPDL3280A according to the tumor expression of programmed death-Ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS ONE 10:e0130142. https://doi.org/10.1371/journal.pone.0130142
Mehra R, Seiwert TY, Gupta S, Weiss J, Gluck I, Eder JP, Burtness B, Tahara M, Keam B, Kang H, Muro K, Geva R, Chung HC, Lin CC, Aurora-Garg D, Ray A, Pathiraja K, Cheng J, Chow LQM, Haddad R (2018) Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012. Br J Cancer 119:153–159. https://doi.org/10.1038/s41416-018-0131-9
Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington KJ, Kasper S, Vokes EE, Even C, Worden F, Saba NF, Docampo LCI, Haddad R, Rordorf T, Kiyota N, Tahara M, Lynch M, Jayaprakash V, Li L, Gillison ML (2018) Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol 81:45–51. https://doi.org/10.1016/j.oraloncology.2018.04.008
Li J, Wang P, Xu Y (2017) Prognostic value of programmed cell death ligand 1 expression in patients with head and neck cancer: a systematic review and meta-analysis. PLoS ONE 12:e0179536. https://doi.org/10.1371/journal.pone.0179536
Yang WF, Wong MCM, Thomson PJ, Li KY, Su YX (2018) The prognostic role of PD-L1 expression for survival in head and neck squamous cell carcinoma: a systematic review and meta-analysis. Oral Oncol 86:81–90. https://doi.org/10.1016/j.oraloncology.2018.09.016
de Ruiter EJ, Ooft ML, Devriese LA, Willems SM (2017) The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology 6:e1356148. https://doi.org/10.1080/2162402X.2017.1356148
Rodrigo JP, Heideman DA, García-Pedrero JM, Fresno MF, Brakenhoff RH, Díaz Molina JP, Snijders PJ, Hermsen MA (2014) Time trends in the prevalence of HPV in oropharyngeal squamous cell carcinomas in northern Spain (1990–2009). Int J Cancer 134:487–492. https://doi.org/10.1002/ijc.28355
Rodrigo JP, Hermsen MA, Fresno MF, Brakenhoff RH, García-Velasco F, Snijders PJ, Heideman DA, García-Pedrero JM (2015) Prevalence of human papillomavirus in laryngeal and hypopharyngeal squamous cell carcinomas in northern Spain. Cancer Epidemiol 39:37–41. https://doi.org/10.1016/j.canep.2014.11.003
Teng MW, Ngiow SF, Ribas A, Smyth MJ (2015) Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res 75:2139–2145. https://doi.org/10.1158/0008-5472.CAN-15-0255
Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. https://doi.org/10.1126/science.1203486
Wu P, Wu D, Li L, Chai Y, Huang J (2015) PD-L1 and survival in solid tumors: a meta-analysis. PLoS ONE 10:e0131403. https://doi.org/10.1371/journal.pone.0131403
Wang Q, Liu F, Liu L (2017) Prognostic significance of PD-L1 in solid tumor: an updated meta-analysis. Medicine (Baltimore) 96:e6369. https://doi.org/10.1097/MD.0000000000006369
Schneider S, Kadletz L, Wiebringhaus R, Kenner L, Selzer E, Füreder T, Rajky O, Berghoff AS, Preusser M, Heiduschka G (2018) PD-1 and PD-L1 expression in HNSCC primary cancer and related lymph node metastasis—impact on clinical outcome. Histopathology 73:573–584. https://doi.org/10.1111/his.13646
Balermpas P, Rödel F, Krause M, Linge A, Lohaus F, Baumann M, Tinhofer I, Budach V, Sak A, Stuschke M, Gkika E, Grosu AL, Abdollahi A, Debus J, Stangl S, Ganswindt U, Belka C, Pigorsch S, Multhoff G, Combs SE, Welz S, Zips D, Lim SY, Rödel C, Fokas E, DKTK-ROG (2017) The PD-1/PD-L1 axis and human papilloma virus in patients with head and neck cancer after adjuvant chemoradiotherapy: a multicentre study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Int J Cancer 141:594–603. https://doi.org/10.1002/ijc.30770
De Meulenaere A, Vermassen T, Aspeslagh S, Deron P, Duprez F, Laukens D, Van Dorpe J, Ferdinande L, Rottey S (2017) Tumor PD-L1 status and CD8+ tumor-infiltrating T cells: markers of improved prognosis in oropharyngeal cancer. Oncotarget 8:80443–80452. https://doi.org/10.18632/oncotarget.19045
Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365. https://doi.org/10.1073/pnas.0611533104
Lipson EJ, Vincent JG, Loyo M, Kagohara LT, Luber BS, Wang H, Xu H, Nayar SK, Wang TS, Sidransky D, Anders RA, Topalian SL, Taube JM (2013) PD-L1 expression in the Merkel cell carcinoma microenvironment: association with inflammation, Merkel cell polyomavirus and overall survival. Cancer Immunol Res 1:54–63. https://doi.org/10.1158/2326-6066.CIR-13-0034
Vilain RE, Menzies AM, Wilmott JS, Kakavand H, Madore J, Guminski A, Liniker E, Kong BY, Cooper AJ, Howle JR, Saw RPM, Jakrot V, Lo S, Thompson JF, Carlino MS, Kefford RF, Long GV, Scolyer RA (2017) Dynamic changes in PD-L1 expression and immune infiltrates early during treatment predict response to PD-1 blockade in Melanoma. Clin Cancer Res 23:5024–5033. https://doi.org/10.1158/1078-0432.CCR-16-0698
Concha-Benavente F, Srivastava RM, Trivedi S, Lei Y, Chandran U, Seethala RR, Freeman GJ, Ferris RL (2016) Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFN-gamma that induce PD-L1 expression in head and neck cancer. Cancer Res 76:1031–1043. https://doi.org/10.1158/0008-5472.CAN-15-2001
Parra ER, Behrens C, Rodriguez-Canales J, Lin H, Mino B, Blando J, Zhang J, Gibbons DL, Heymach JV, Sepesi B, Swisher SG, Weissferdt A, Kalhor N, Izzo J, Kadara H, Moran C, Lee JJ, Wistuba II (2016) Image analysis-based assessment of PD-L1 and tumor-associated immune cells density supports distinct intratumoral microenvironment groups in non-small cell lung carcinoma patients. Clin Cancer Res 22:6278–6289. https://doi.org/10.1158/1078-0432.CCR-15-2443
Ono T, Azuma K, Kawahara A, Sasada T, Hattori S, Sato F, Shin B, Chitose SI, Akiba J, Hirohito U (2017) Association between PD-L1 expression combined with tumor-infiltrating lymphocytes and the prognosis of patients with advanced hypopharyngeal squamous cell carcinoma. Oncotarget 8:92699–92714. https://doi.org/10.18632/oncotarget.21564
Hu C, Tian S, Lin L, Zhang J, Ding H (2020) Prognostic and clinicopathological significance of PD-L1 and tumor infiltrating lymphocytes in hypopharyngeal squamous cell carcinoma. Oral Oncol 102:104560. https://doi.org/10.1016/j.oraloncology.2019.104560
Shang B, Liu Y, Jiang SJ, Liu Y (2015) Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5:15179. https://doi.org/10.1038/srep15179
Park K, Cho KJ, Lee M, Yoon DH, Kim SB (2013) Importance of FOXP3 in prognosis and its relationship with p16 in tonsillar squamous cell carcinoma. Anticancer Res 33:5667–5673
Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105:93–103. https://doi.org/10.1038/bjc.2011.189
Nasman A, Romanitan M, Nordfors C, Grun N, Johansson H, Hammarstedt L, Marklund L, Munck-Wikland E, Dalianis T, Ramqvist T (2012) Tumor infiltrating CD8C and Foxp3C lymphocytes correlate to clinical outcome and human papillomavirus (HPV) status in tonsillar cancer. PLoS ONE 7(6):e38711. https://doi.org/10.1371/journal.pone.0038711
Chen WY, Wu CT, Wang CW, Lan KH, Liang HK, Huang BS, Chang YL, Kuo SH, Cheng AL (2018) Prognostic significance of tumor-infiltrating lymphocytes in patients with operable tongue cancer. Radiat Oncol 13:157. https://doi.org/10.1186/s13014-018-1099-6
Kim HR, Ha SJ, Hong MH, Heo SJ, Koh YW, Choi EC, Kim EK, Pyo KH, Jung I, Seo D, Choi J, Cho BC, Yoon SO (2016) PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for head and neck cancer patients. Sci Rep 6:36956. https://doi.org/10.1038/srep36956
Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, Levionnois E, Nizard M, Si-Mohamed A, Besnier N, Gey A, Rotem-Yehudar R, Pere H, Tran T, Guerin CL, Chauvat A, Dransart E, Alanio C, Albert S, Barry B, Sandoval F, Quintin-Colonna F, Bruneval P, Fridman WH, Lemoine FM, Oudard S, Johannes L, Olive D, Brasnu D, Tartour E (2013) PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 73:128–138. https://doi.org/10.1158/0008-5472.CAN-12-2606
Acknowledgements
This study was supported by Grants from the Plan Nacional de I+D+I 2013–2016 [ISCIII (PI16/00280 and PI19/00560 to JMGP and PI19/00098 to LMM), CIBERONC (CB16/12/00390 to JPR and CB16/12/00443 to LMM)], the Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Fundación Merck Salud (17-CC-008 to JPR), Ayudas a Grupos PCTI Principado de Asturias (IDI2018/155 to JPR), and the FEDER Funding Program from the European Union. RGD is recipient of a Severo Ochoa predoctoral fellowship (BP19-063) from the Principado de Asturias, and NRI is recipient of a FPU predoctoral fellowship (FPU17/01985) from the Spanish Ministry of Education. We want to particularly acknowledge for its collaboration the Principado de Asturias BioBank (PT17/0015/0023), financed jointly by Servicio de Salud del Principado de Asturias, Instituto de Salud Carlos III, and Fundación Bancaria Cajastur and integrated in the Spanish National Biobanks Network.
Author information
Authors and Affiliations
Contributions
JPR and JMGP were involved in the conceptualization; MSC, RGD, NRI, EA, JA, and IG contributed to methodology; JPR, JMGP, FLÁ, and LMM helped in formal analysis and investigation; JPR was involved in writing—original draft preparation; JMGP, FLÁ, and LMM contributed to writing—review and editing; JPR, JMGP, and LMM helped in funding acquisition; JPR and LMM contributed to resources; JPR, JMGP, and LMM helped in the supervision. All authors read and approved the final manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee [Regional Ethical Committee from Principado de Asturias for the project PI16/00280 (approval number: 70/16; date: 5 May 2016)] and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sanchez-Canteli, M., Granda-Díaz, R., del Rio-Ibisate, N. et al. PD-L1 expression correlates with tumor-infiltrating lymphocytes and better prognosis in patients with HPV-negative head and neck squamous cell carcinomas. Cancer Immunol Immunother 69, 2089–2100 (2020). https://doi.org/10.1007/s00262-020-02604-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00262-020-02604-w