Skip to main content

Advertisement

Log in

Phosphorylated vimentin as an immunotherapeutic target against metastatic colorectal cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) patients with metastatic lesions have low 5-year survival rates. During metastasis, cancer cells often obtain unique characteristics such as epithelial–mesenchymal transition (EMT). Vimentin a biomarker contributes to EMT by changing cell shape and motility. Since abnormal phosphorylation is a hallmark of malignancy, targeting phosphorylated vimentin is a feasible approach for the treatment of metastatic tumors while sparing non-tumor cells. Recent evidence has revealed that both CD8 cytotoxic T lymphocytes (CTLs) and also CD4 helper T lymphocytes (HTLs) can distinguish post-translationally modified antigens from normal antigens. Here, we showed that the expression of phosphorylated vimentin was upregulated in metastatic sites of CRC. We also showed that a chemotherapeutic reagent augmented the expression of phosphorylated vimentin. The novel phosphorylated helper peptide epitopes from vimentin could elicit a sufficient T cell response. Notably, precursor lymphocytes that specifically reacted to these phosphorylated vimentin-derived peptides were detected in CRC patients. These results suggest that immunotherapy targeting phosphorylated vimentin could be promising for metastatic CRC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APCs:

Antigen-presenting cells

CRC:

Colorectal cancer

CTLs:

CD8 cytotoxic T lymphocytes

DCs:

Dendritic cells

EMT:

Epithelial–mesenchymal transition

HTLs:

CD4 helper T lymphocytes

L-cells:

Fibroblast cell lines

mAb:

Monoclonal antibody

PBMCs:

Peripheral blood mononuclear cells

SCC:

Squamous cell carcinoma

TAA:

Tumor-associated antigen

TCR:

T cell receptors

References

  1. Howlader N, Noone AM, Krapcho M et al. (1975–2016) SEER Cancer Statistics Review. National Cancer Institute. https://seer.cancer.gov/csr/1975_2016/. April 2019

  2. Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520. https://doi.org/10.1056/NEJMoa1500596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zauber AG, Winawer SJ, O’Brien MJ et al (2012) Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med 366:687–696. https://doi.org/10.1056/NEJMoa1100370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richardson AM, Havel L, Koyen AE et al (2017) Vimentin is required for lung adenocarcinoma metastasis via heterotypic tumor cell-cancer-associated fibroblast interactions during collective invasion. Clin Cancer Res. https://doi.org/10.1158/1078-0432.ccr-17-1776

    Article  PubMed  PubMed Central  Google Scholar 

  5. Toiyama Y, Yasuda H, Saigusa S, Tanaka K, Inoue Y, Goel A, Kusunoki M (2013) Increased expression of Slug and Vimentin as novel predictive biomarkers for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis 34:2548–2557. https://doi.org/10.1093/carcin/bgt282

    Article  CAS  PubMed  Google Scholar 

  6. Shirahata A, Hibi K (2014) Serum vimentin methylation as a potential marker for colorectal cancer. Anticancer Res 34:4121–4125

    CAS  PubMed  Google Scholar 

  7. Liu LG, Yan XB, Xie RT, Jin ZM, Yang Y (2017) Stromal expression of vimentin predicts the clinical outcome of stage II colorectal cancer for high-risk patients. Medical Sci Monit Int Med J Exp Clin Res 23:2897–2905

    Google Scholar 

  8. Du L, Li J, Lei L, He H, Chen E, Dong J, Yang J (2018) High vimentin expression predicts a poor prognosis and progression in colorectal cancer: a study with meta-analysis and TCGA database. Biomed Res Int 2018:6387810. https://doi.org/10.1155/2018/6387810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu QS, Rosenblatt K, Huang KL et al (2011) Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene 30:457–470. https://doi.org/10.1038/onc.2010.421

    Article  CAS  PubMed  Google Scholar 

  10. Zarling AL, Polefrone JM, Evans AM, Mikesh LM, Shabanowitz J, Lewis ST, Engelhard VH, Hunt DF (2006) Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Proc Natl Acad Sci USA 103:14889–14894. https://doi.org/10.1073/pnas.0604045103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krueger KE, Srivastava S (2006) Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol Cell Proteomics MCP 5:1799–1810. https://doi.org/10.1074/mcp.R600009-MCP200

    Article  CAS  PubMed  Google Scholar 

  12. Ohara K, Ohkuri T, Kumai T et al (2018) Targeting phosphorylated p53 to elicit tumor-reactive T helper responses against head and neck squamous cell carcinoma. Oncoimmunology 7:e1466771. https://doi.org/10.1080/2162402x.2018.1466771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumai T, Ishibashi K, Oikawa K et al (2014) Induction of tumor-reactive T helper responses by a posttranslational modified epitope from tumor protein p53. Cancer Immunol Immunother 63:469–478. https://doi.org/10.1007/s00262-014-1533-z

    Article  CAS  PubMed  Google Scholar 

  14. Kumai T, Lee S, Cho HI, Sultan H, Kobayashi H, Harabuchi Y, Celis E (2016) Optimization of peptide vaccines to induce robust antitumor CD4 T-cell responses. Cancer Immunol Res. https://doi.org/10.1158/2326-6066.cir-16-0194

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kumai T, Kobayashi H, Harabuchi Y, Celis E (2016) Peptide vaccines in cancer-old concept revisited. Curr Opin Immunol 45:1–7. https://doi.org/10.1016/j.coi.2016.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kobayashi Y, Sakura T, Miyawaki S, Toga K, Sogo S, Heike Y (2017) A new peptide vaccine OCV-501: in vitro pharmacology and phase 1 study in patients with acute myeloid leukemia. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-017-1981-3

    Article  PubMed  PubMed Central  Google Scholar 

  17. Quezada SA, Simpson TR, Peggs KS et al (2010) Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 207:637–650. https://doi.org/10.1084/jem.20091918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hirata-Nozaki Y, Ohkuri T, Ohara K et al (2019) PD-L1-specific helper T-cells exhibit effective antitumor responses: new strategy of cancer immunotherapy targeting PD-L1 in head and neck squamous cell carcinoma. J Transl Med 17:207. https://doi.org/10.1186/s12967-019-1957-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brentville VA, Metheringham RL, Gunn B, Symonds P, Daniels I, Gijon M, Cook K, Xue W, Durrant LG (2016) Citrullinated vimentin presented on MHC-II in tumor cells is a target for CD4+ T-cell-mediated antitumor immunity. Can Res 76:548–560. https://doi.org/10.1158/0008-5472.can-15-1085

    Article  CAS  Google Scholar 

  20. Panina-Bordignon P, Tan A, Termijtelen A, Demotz S, Corradin G, Lanzavecchia A (1989) Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol 19:2237–2242. https://doi.org/10.1002/eji.1830191209

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi H, Wood M, Song Y, Appella E, Celis E (2000) Defining promiscuous MHC class II helper T-cell epitopes for the HER2/neu tumor antigen. Can Res 60:5228–5236

    CAS  Google Scholar 

  22. Kumai T, Matsuda Y, Oikawa K, Aoki N, Kimura S, Harabuchi Y, Celis E, Kobayashi H (2013) EGFR inhibitors augment antitumour helper T-cell responses of HER family-specific immunotherapy. Br J Cancer 109:2155–2166. https://doi.org/10.1038/bjc.2013.577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumai T, Ohkuri T, Nagato T et al (2015) Targeting HER-3 to elicit antitumor helper T cells against head and neck squamous cell carcinoma. Sci Rep 5:16280. https://doi.org/10.1038/srep16280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Albert M, Kiefer MV, Sun W, Haller D, Fraker DL, Tuite CM, Stavropoulos SW, Mondschein JI, Soulen MC (2011) Chemoembolization of colorectal liver metastases with cisplatin, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol. Cancer 117:343–352. https://doi.org/10.1002/cncr.25387

    Article  CAS  PubMed  Google Scholar 

  25. Emami F, Banstola A, Vatanara A, Lee S, Kim JO, Jeong JH, Yook S (2019) Doxorubicin and anti-PD-L1 antibody conjugated gold nanoparticles for colorectal cancer photochemotherapy. Mol Pharm 16:1184–1199. https://doi.org/10.1021/acs.molpharmaceut.8b01157

    Article  CAS  PubMed  Google Scholar 

  26. Obara W, Ohsawa R, Kanehira M et al (2012) Cancer peptide vaccine therapy developed from oncoantigens identified through genome-wide expression profile analysis for bladder cancer. Jpn J Clin Oncol 42:591–600. https://doi.org/10.1093/jjco/hys069

    Article  PubMed  Google Scholar 

  27. Hayashi S, Kumai T, Matsuda Y et al (2011) Six-transmembrane epithelial antigen of the prostate and enhancer of zeste homolog 2 as immunotherapeutic targets for lung cancer. J Transl Med 9:191. https://doi.org/10.1186/1479-5876-9-191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goto H, Kosako H, Tanabe K, Yanagida M, Sakurai M, Amano M, Kaibuchi K, Inagaki M (1998) Phosphorylation of vimentin by Rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. J Biol Chem 273:11728–11736

    Article  CAS  PubMed  Google Scholar 

  29. Yamaguchi T, Goto H, Yokoyama T et al (2005) Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis. J Cell Biol 171:431–436. https://doi.org/10.1083/jcb.200504091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu S, Liu L, Ye W et al (2016) High vimentin expression associated with lymph node metastasis and predicated a poor prognosis in oral squamous cell carcinoma. Sci Rep 6:38834. https://doi.org/10.1038/srep38834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen WC, Lai YA, Lin YC, Ma JW, Huang LF, Yang NS, Ho CT, Kuo SC, Way TD (2013) Curcumin suppresses doxorubicin-induced epithelial–mesenchymal transition via the inhibition of TGF-beta and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J Agric Food Chem 61:11817–11824. https://doi.org/10.1021/jf404092f

    Article  CAS  PubMed  Google Scholar 

  32. Horn L, Mansfield AS, Szczesna A et al (2018) First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med 379:2220–2229. https://doi.org/10.1056/NEJMoa1809064

    Article  CAS  PubMed  Google Scholar 

  33. Harabuchi S, Kosaka A, Yuki Y et al (2019) Intratumoral STING activations overcome negative impact of cisplatin on antitumor immunity by inflaming tumor microenvironment in squamous cell carcinoma. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2019.11.107

    Article  PubMed  Google Scholar 

  34. Shibayama Y, Tsukahara T, Emori M et al (2017) Implication of chemo-resistant memory T cells for immune surveillance in patients with sarcoma receiving chemotherapy. Cancer Sci 108:1739–1745. https://doi.org/10.1111/cas.13319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Depontieu FR, Qian J, Zarling AL et al (2009) Identification of tumor-associated, MHC class II-restricted phosphopeptides as targets for immunotherapy. Proc Natl Acad Sci USA 106:12073–12078. https://doi.org/10.1073/pnas.0903852106

    Article  PubMed  PubMed Central  Google Scholar 

  36. Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL (2006) Post-translational modifications of naturally processed MHC-binding epitopes. Curr Opin Immunol 18:92–97. https://doi.org/10.1016/j.coi.2005.11.015

    Article  CAS  PubMed  Google Scholar 

  37. Kumai T, Fan A, Harabuchi Y, Celis E (2017) Cancer immunotherapy: moving forward with peptide T cell vaccines. Curr Opin Immunol 47:57–63. https://doi.org/10.1016/j.coi.2017.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucl Acids Res 45:D158-d69. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Japanese Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 17K16884 and 19K07452.

Author information

Authors and Affiliations

Authors

Contributions

MO, KO, TN, and YH-N contributed to data acquisition. AK, MN, RH, SH, and YY contributed to data acquisition and analysis. TK, TO, and KO contributed to the design and concept and drafting of the manuscript. All authors were involved in data interpretation, preparation, and review of the manuscript draft and approved the final manuscript version for submission.

Corresponding authors

Correspondence to Takumi Kumai or Takayuki Ohkuri.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

This study followed the principles of the Helsinki Declaration, and the study protocol was approved by the Asahikawa Medical University Institutional Ethics Committee (approval number #16040-3).

Informed consent

All blood samples from healthy human volunteers and CRC patients (Asahikawa Medical University Hospital, 2016-2018) were obtained after obtaining written informed consent (Institutional Ethics Committee approval number #16040-3). The patients and healthy donors agreed to the use of their specimens and data for research and publication.

Cell line authentication

The CRC cell lines SW480 and SW620 were purchased from KAC Co., Ltd. (Kyoto, Japan). Lung SCC cell lines Calu-1 and Jurkat (T cell lymphoma) were obtained from the American Type Culture Collection (ATCC, Manassas, VA). The gingival SCC cell line Sa-3 and lung large cell carcinoma cell line Lu65 were supplied by the RIKEN Bio-Resource Center (Tsukuba, Japan). The renal cell carcinoma cell line SW839 was obtained from the Cell Resource Center for Biomedical Research Institute of Development (Aging and Cancer, Tohoku University, Sendai, Japan). Cell authentication assays were performed by each company, and the cell passaging was no more than five times.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mizuho Ohara and Kenzo Ohara have first authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 15791 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohara, M., Ohara, K., Kumai, T. et al. Phosphorylated vimentin as an immunotherapeutic target against metastatic colorectal cancer. Cancer Immunol Immunother 69, 989–999 (2020). https://doi.org/10.1007/s00262-020-02524-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02524-9

Keywords

Navigation