Skip to main content

Advertisement

Log in

Bovine papillomavirus prostate cancer antigen virus-like particle vaccines are efficacious in advanced cancers in the TRAMP mouse spontaneous prostate cancer model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Prostate cancer is a candidate for immunotherapy because cancer cells express tissue-specific proteins that can be therapeutic targets. However, immune checkpoint inhibitors and active immunization have performed poorly in clinical trials. We developed a novel virus-like particle (VLP) vaccine composed of bovine papillomavirus L1 protein engineered to display surface docking sites. We decorated VLPs with peptides encoding T cell epitopes from two prostate cancer-associated tumor antigens, prostate stem cell antigen (PSCA), and prostatic acid phosphatase (PAP-1 and PAP-2), and a neo-antigen, stimulator of prostatic adenocarcinoma-specific T cells (SPAS-1). The VLP vaccines induced a mean frequency of antigen-specific IFN-γ secreting CD8 + T cells of 2.9% to PSCA, 9.5% to SPAS-1, 0.03% to PAP-1, and 0.03% to PAP-2 in tumor-bearing TRAMP mice. We treated TRAMP mice at 19–20 weeks of age, when mice have advanced stages of carcinogenesis, with either VLP vaccine, anti-PD1 antibody, or combination immunotherapy. The VLP vaccine alone or in combination with anti-PD1 antibody significantly reduced tumor burden, while anti-PD1 antibody had a modest non-significant therapeutic effect. All treatments significantly increased CD3 + and CD8 + T cell infiltration into tumor tissue compared to control mice, and combination therapy resulted in significantly greater CD3 + and CD8 + T cell infiltration than monotherapy. Reduction in tumor burden in vaccine-treated mice was inversely correlated with CD8 + T cell numbers in tumor tissue. No other immunotherapy has shown efficacy in this animal model of advanced prostate cancer, making bovine papillomavirus VLPs an attractive vaccine technology to test in patients with metastatic prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAY:

Alanine-alanine–tyrosine

BPV:

Bovine papillomavirus

DAB:

Diaminobenzidine

CTLA4:

Cytotoxic T-lymphocyte-associated protein 4

GSH:

Glutathione

GSSG:

Glutathione disulfide

IQR:

Interquartile range

ORF:

Open reading frame

PAP:

Prostatic acid phosphatase

PC:

Prostate cancer

PD-1:

Programed death-1

PIN:

Prostatic intraepithelial neoplasia

PSCA:

Prostate stem cell antigen

SPAS:

Stimulator of prostatic adenocarcinoma-specific T cells

TCEP:

Tris(2-carboxyethyl)phosphine

TRAMP:

Transgenic adenocarcinoma of the mouse prostate

VLP:

Virus-like particle

References

  1. Miranti CK, Koul HR (2017) Meeting Report of Joint Society of Basic Urologic Research (SBUR) and European Society of Urological Research (ESUR) symposium fall 2017. Am J Clin Exp Urol 5(1):1–92 (Abstract# P54)

    Article  Google Scholar 

  2. National Cancer Institute (2019) Cancer Stat Facts: Prostate Cancer. https://seer.cancer.gov/statfacts/html/prost.html. Accessed Dec 2019

  3. Kiessling A, Wehner R, Fussel S, Bachmann M, Wirth MP, Schmitz M (2012) Tumor-associated antigens for specific immunotherapy of prostate cancer. Cancers (Basel) 4:193–217

    Article  CAS  Google Scholar 

  4. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  CAS  PubMed  Google Scholar 

  5. Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Provost N, Frohlich MW (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115:3670–3679

    Article  CAS  PubMed  Google Scholar 

  6. Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, Ganju V, Polikoff J, Saad F, Humanski P, Piulats JM, Gonzalez MP, Ng SS, Jaeger D, Parnis FX, Franke FA, Puente J, Carvajal R, Sengelov L, McHenry MB, Varma A, van den Eertwegh AJ, Gerritsen W (2017) Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol 35:40–47

    Article  CAS  PubMed  Google Scholar 

  7. van den Eertwegh AJ, Versluis J, van den Berg HP, Santegoets SJ, van Moorselaar RJ, van der Sluis TM, Gall HE, Harding TC, Jooss K, Lowy I, Pinedo HM, Scheper RJ, Stam AG, von Blomberg BM, de Gruijl TD, Hege K, Sacks N, Gerritsen WR (2012) Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 13:509–517

    Article  CAS  PubMed  Google Scholar 

  8. Parsons JK, Pinto PA, Pavlovich CP, Uchio E, Kim HL, Nguyen MN, Gulley JL, Jamieson C, Hsu P, Wojtowicz M, Parnes H, Schlom J, Dahut WL, Madan RA, Donahue RN, Chow HS (2018) A randomized, double-blind, phase II trial of PSA-TRICOM (PROSTVAC) in patients with localized prostate cancer: the immunotherapy to prevent progression on active surveillance study. Eur Urol Focus 4:636–638

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kantoff PW, Gulley JL, Pico-Navarro C (2017) Revised overall survival analysis of a phase II, randomized, double-blind, controlled study of PROSTVAC in men with metastatic castration-resistant prostate cancer. J Clin Oncol 35:124–125

    Article  PubMed  Google Scholar 

  10. Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J, Dahut WL, Arlen PM, Gulley JL, Godfrey WR (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28:1099–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Higano CS, Corman JM, Smith DC, Centeno AS, Steidle CP, Gittleman M, Simons JW, Sacks N, Aimi J, Small EJ (2008) Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 113:975–984

    Article  CAS  PubMed  Google Scholar 

  12. Lubaroff DM (2012) Prostate cancer vaccines in clinical trials. Expert Rev Vaccines 11:857–868

    Article  CAS  PubMed  Google Scholar 

  13. McNeel DG, Dunphy EJ, Davies JG, Frye TP, Johnson LE, Staab MJ, Horvath DL, Straus J, Alberti D, Marnocha R, Liu G, Eickhoff JC, Wilding G (2009) Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J Clin Oncol 27:4047–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pavlenko M, Roos AK, Lundqvist A, Palmborg A, Miller AM, Ozenci V, Bergman B, Egevad L, Hellstrom M, Kiessling R, Masucci G, Wersall P, Nilsson S, Pisa P (2004) A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br J Cancer 91:688–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pejawar-Gaddy S, Rajawat Y, Hilioti Z, Xue J, Gaddy DF, Finn OJ, Viscidi RP, Bossis I (2010) Generation of a tumor vaccine candidate based on conjugation of a MUC1 peptide to polyionic papillomavirus virus-like particles. Cancer Immunol Immunother 59:1685–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia-Hernandez ML, Gray A, Hubby B, Klinger OJ, Kast WM (2008) Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res 68:861–869

    Article  CAS  Google Scholar 

  17. Spies E, Reichardt W, Alvarez G, Groettrup M, Ohlschlager P (2012) An artificial PAP gene breaks self-tolerance and promotes tumor regression in the TRAMP model for prostate carcinoma. Mol Ther 20:555–564

    Article  CAS  PubMed  Google Scholar 

  18. Fasso M, Waitz R, Hou Y, Rim T, Greenberg NM, Shastri N, Fong L, Allison JP (2008) SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: A prostate tumor antigen identified by CTLA-4 blockade. Proc Natl Acad Sci USA 105:3509–3514

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hearn A, York IA, Rock KL (2009) The specificity of trimming of MHC class I-presented peptides in the endoplasmic reticulum. J Immunol 183:5526–5536

    Article  CAS  PubMed  Google Scholar 

  20. Coban C, Kobiyama K, Aoshi T, Takeshita F, Horii T, Akira S, Ishii KJ (2011) Novel strategies to improve DNA vaccine immunogenicity. Curr Gene Ther 11:479–484

    Article  CAS  PubMed  Google Scholar 

  21. Eriksson F, Totterman T, Maltais AK, Pisa P, Yachnin J (2013) DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 31:3843–3848

    Article  CAS  PubMed  Google Scholar 

  22. Ura T, Okuda K, Shimada M (2014) Developments in viral vector-based vaccines. Vaccines (Basel) 2:624–641

    Article  CAS  Google Scholar 

  23. Lu S (2009) Heterologous prime-boost vaccination. Curr Opin Immunol 21:346–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Calvo TM, Allard M, Dutoit V, Dietrich PY, Walker PR (2019) Peptides as cancer vaccines. Curr Opin Pharmacol 47:20–26

    Article  CAS  Google Scholar 

  25. Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L (2018) Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology 7:e1511506

    Article  PubMed  PubMed Central  Google Scholar 

  26. Obara W, Sato F, Takeda K, Kato R, Kato Y, Kanehira M, Takata R, Mimata H, Sugai T, Nakamura Y, Fujioka T (2017) Phase I clinical trial of cell division associated 1 (CDCA1) peptide vaccination for castration resistant prostate cancer. Cancer Sci 108:1452–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bastola R, Noh G, Keum T, Bashyal S, Seo JE, Choi J, Oh Y, Cho Y, Lee S (2017) Vaccine adjuvants: smart components to boost the immune system. Arch Pharm Res 40:1238–1248

    Article  CAS  PubMed  Google Scholar 

  28. Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA (2019) Nanoparticle systems for cancer vaccine. Nanomedicine (Lond) 14:627–648

    Article  CAS  Google Scholar 

  29. Lenz P, Day PM, Pang YY, Frye SA, Jensen PN, Lowy DR, Schiller JT (2001) Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol 166:5346–5355

    Article  CAS  PubMed  Google Scholar 

  30. Lenz P, Lowy DR, Schiller JT (2005) Papillomavirus virus-like particles induce cytokines characteristic of innate immune responses in plasmacytoid dendritic cells. Eur J Immunol 35:1548–1556

    Article  CAS  PubMed  Google Scholar 

  31. Yang R, Murillo FM, Lin KY, Yutzy WH, Uematsu S, Takeda K, Akira S, Viscidi RP, Roden RB (2004) Human papillomavirus type-16 virus-like particles activate complementary defense responses in key dendritic cell subpopulations. J Immunol 173:2624–2631

    Article  CAS  PubMed  Google Scholar 

  32. Yang R, Murillo FM, Cui H, Blosser R, Uematsu S, Takeda K, Akira S, Viscidi RP, Roden RB (2004) Papillomavirus-like particles stimulate murine bone marrow-derived dendritic cells to produce alpha interferon and Th1 immune responses via MyD88. J Virol 78:11152–11160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saif JM, Vadakekolathu J, Rane SS, McDonald D, Ahmad M, Mathieu M, Pockley AG, Durrant L, Metheringham R, Rees RC, McArdle SE (2014) Novel prostate acid phosphatase-based peptide vaccination strategy induces antigen-specific T-cell responses and limits tumour growth in mice. Eur J Immunol 44:994–1004

    Article  CAS  PubMed  Google Scholar 

  34. Cappuccini F, Stribbling S, Pollock E, Hill AV, Redchenko I (2016) Immunogenicity and efficacy of the novel cancer vaccine based on simian adenovirus and MVA vectors alone and in combination with PD-1 mAb in a mouse model of prostate cancer. Cancer Immunol Immunother 65:701–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mueller M, Reichardt W, Koerner J, Groettrup M (2012) Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J Control Release 162:159–166

    Article  CAS  PubMed  Google Scholar 

  36. Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92:3439–3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gingrich JR, Barrios RJ, Foster BA, Greenberg NM (1999) Pathologic progression of autochthonous prostate cancer in the TRAMP model. Prostate Cancer Prostatic Dis 2:70–75

    Article  CAS  PubMed  Google Scholar 

  38. Kido LA, de Almeida LC, Marostica MR Jr, Cagnon VHA (2019) Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model: a good alternative to study PCa progression and chemoprevention approaches. Life Sci 217:141–147

    Article  CAS  PubMed  Google Scholar 

  39. Gray A, de la Garcia-Hernandez L, van WM, Kanodia S, Hubby B, Kast WM, (2009) Prostate cancer immunotherapy yields superior long-term survival in TRAMP mice when administered at an early stage of carcinogenesis prior to the establishment of tumor-associated immunosuppression at later stages. Vaccine 27(Suppl 6):G52–G59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hurwitz AA, Foster BA, Kwon ED, Truong T, Choi EM, Greenberg NM, Burg MB, Allison JP (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 60:2444–2448

    CAS  PubMed  Google Scholar 

  41. Krupa M, Canamero M, Gomez CE, Najera JL, Gil J, Esteban M (2011) Immunization with recombinant DNA and modified vaccinia virus Ankara (MVA) vectors delivering PSCA and STEAP1 antigens inhibits prostate cancer progression. Vaccine 29:1504–1513

    Article  CAS  PubMed  Google Scholar 

  42. Kwilas AR, Ardiani A, Dirmeier U, Wottawah C, Schlom J, Hodge JW (2015) A poxviral-based cancer vaccine the transcription factor twist inhibits primary tumor growth and metastases in a model of metastatic breast cancer and improves survival in a spontaneous prostate cancer model. Oncotarget 6:28194–28210

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fu J, Malm IJ, Kadayakkara DK, Levitsky H, Pardoll D, Kim YJ (2014) Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Res 74:4042–4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA, Humphrey PA, Sundberg JP, Rozengurt N, Barrios R, Ward JM, Cardiff RD (2004) Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64:2270–2305

    Article  CAS  PubMed  Google Scholar 

  45. Beck SE, Queen SE, Viscidi R, Johnson D, Kent SJ, Adams RJ, Tarwater PM, Mankowski JL (2016) Central nervous system-specific consequences of simian immunodeficiency virus Gag escape from major histocompatibility complex class I-mediated control. J Neurovirol 22:498–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the NIH tetramer core facility for provision of dye labeled MHC peptide complexes.

Funding

This work was supported by grants from the Allegheny Health Network, Patrick C. Walsh Prostate Cancer Research Fund, and State of Maryland TEDCO program.

Author information

Authors and Affiliations

Authors

Contributions

BWS contributed to study design and analysis, and supervised immunization of mice, measurement of tumor size and immunohistochemical analysis of tumor tissue. FC produced VLP vaccines and assisted with measurements of tumor size. DTR produced VLP vaccines and performed flow cytometry analysis of the immune response to vaccination. RPV contributed to study design and analysis, and supervised production of VLP vaccines and analysis of vaccine immunogenicity.

Corresponding author

Correspondence to Raphael P. Viscidi.

Ethics declarations

Conflict of interest

Raphael P Viscidi is the inventor of the bovine VLP vaccine technology and could financially benefit if a product based on the technology is commercialized. All other authors declare that they have no conflicts of interest.

Ethical approval

All animal procedures were performed according to NIH guidelines under protocol MO17M189 approved by the Johns Hopkins University Animal Care and Use Committee.

Animal rights

Breeding pairs of TRAMP mice (C57BL/6-Tg(TRAMP)8247Ng/J)(stock no. 003135) and wild type C57BL/6 J mice (stock no. 000664) were purchased from Jackson Laboratories (Bar Harbor, ME). Tramp mice were bred within our colony on a pure C57BL/6 background.

Cell line authentication

High Five™ Cells (BTI-TN-5B1-4) are a clonal isolate derived from the parental Trichoplusia ni cell line (cabbage looper ovary) and are adapted to serum-free culture (Thermo Fisher Scientific, #B85502). The cells were not further authenticated as they are of insect origin and were used for protein production only.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simons, B.W., Cannella, F., Rowley, D.T. et al. Bovine papillomavirus prostate cancer antigen virus-like particle vaccines are efficacious in advanced cancers in the TRAMP mouse spontaneous prostate cancer model. Cancer Immunol Immunother 69, 641–651 (2020). https://doi.org/10.1007/s00262-020-02493-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02493-z

Keywords

Navigation