Skip to main content

Advertisement

Log in

Specific T-cell immune responses against colony-forming cells including leukemic progenitor cells of AML patients were increased by immune checkpoint inhibition

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The efficacy of immunotherapies in cancer treatment becomes more and more apparent not only in different solid tumors but also in hematological malignancies. However, in acute myeloid leukemia (AML), mechanisms to increase the efficacy of immunotherapeutic approaches have to be further elucidated. Targeting leukemic progenitor and stem cells (LPC/LSC) by specific CTL, for instance, in an adjuvant setting or in minimal residual disease, might be an option to prevent relapse of AML or to treat MRD. Therefore, we investigated the influence of immune checkpoint inhibitors on LAA-specific immune responses by CTL against leukemic myeloid blasts and colony-forming cells including leukemic progenitor cells (CFC/LPC). In functional immunoassays like CFU/CFI (colony-forming units/immunoassays) and ELISpot analysis, we detected specific LAA-directed immune responses against CFC/LPC that are postulated to be the source population of relapse of the disease. The addition of nivolumab (anti-PD-1) significantly increases LAA-directed immune responses against CFC/LPC, no effect is seen when ipilimumab (anti-CTLA-4) is added. The combination of ipilimumab and nivolumab does not improve the effect compared to nivolumab alone. The anti-PD1-directed immune response correlates to PD-L1 expression on progenitor cells. Our data suggest that immunotherapeutic approaches have the potential to target malignant CFC/LPC and anti-PD-1 antibodies could be an immunotherapeutic approach in AML. Moreover, combination with LAA-directed vaccination strategies might also open interesting application possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Anti-CTLA-4:

Anti-cytotoxic T-lymphocyte-associated protein 4, ipilimumab

Anti-PD-1:

Anti-programmed death 1, nivolumab

CARs:

Chimeric antigen receptor T cells

CFC/LPC:

Colony-forming cells including leukemic progenitor cells

CFI:

Colony-forming immunoassays

DLI:

Donor lymphocyte infusion

GvL:

Graft-versus-leukemia

ICI:

Immune checkpoint inhibition

LAA:

Leukemia-associated antigens

LPC/LSC:

Leukemic progenitor and stem cells

MDS:

Myelodysplastic syndrome

MLPC:

Mixed lymphocyte peptide culture

NPM1mut :

Nucleophosmin 1 mutated

NPM1WT :

Nucleophosmin 1 wildtype

PD-L1:

Programmed death 1 ligand 1

PRAME:

Preferentially expressed antigen in melanoma

RHAMM:

Receptor for hyaluronan-mediated motility

WT1:

Wilms’ tumor 1

References

  1. Dohner H, Estey E, Grimwade D et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129:424–447. https://doi.org/10.1182/blood-2016-08-733196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee CJ, Savani BN, Mohty M et al (2018) Post-remission strategies for the prevention of relapse following allogeneic hematopoietic cell transplantation for high-risk acute myeloid leukemia: expert review from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. https://doi.org/10.1038/s41409-018-0286-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Spencer KR, Wang J, Silk AW, Ganesan S, Kaufman HL, Mehnert JM (2016) Biomarkers for immunotherapy: current developments and challenges. Am Soc Clin Oncol Educ Book 35:e493–503. https://doi.org/10.14694/EDBK_160766

    Article  PubMed  Google Scholar 

  4. Martin-Liberal J, Ochoa de Olza M, Hierro C, Gros A, Rodon J, Tabernero J (2017) The expanding role of immunotherapy. Cancer Treat Rev 54:74–86. https://doi.org/10.1016/j.ctrv.2017.01.008

    Article  CAS  PubMed  Google Scholar 

  5. Wahid B, Ali A, Rafique S, Waqar M, Wasim M, Wahid K, Idrees M (2018) An overview of cancer immunotherapeutic strategies. Immunotherapy 10:999–1010. https://doi.org/10.2217/imt-2018-0002

    Article  CAS  PubMed  Google Scholar 

  6. Kolb HJ (2017) Hematopoietic stem cell transplantation and cellular therapy. HLA 89:267–277. https://doi.org/10.1111/tan.13005

    Article  PubMed  Google Scholar 

  7. Falkenburg JHF, Jedema I (2017) Graft versus tumor effects and why people relapse. Hematology/the Education Program of the American Society of Hematology. Am Soc Hematol Educ Program 2017:693–698. https://doi.org/10.1182/asheducation-2017.1.693

    Article  Google Scholar 

  8. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461. https://doi.org/10.1016/j.ccell.2015.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hude I, Sasse S, Engert A, Brockelmann PJ (2017) The emerging role of immune checkpoint inhibition in malignant lymphoma. Haematologica 102:30–42. https://doi.org/10.3324/haematol.2016.150656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gandhi L, Rodriguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378:2078–2092. https://doi.org/10.1056/NEJMoa1801005

    Article  CAS  PubMed  Google Scholar 

  12. Hellmann MD, Ciuleanu TE, Pluzanski A et al (2018) Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 378:2093–2104. https://doi.org/10.1056/NEJMoa1801946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Binnewies M, Roberts EW, Kersten K et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–550. https://doi.org/10.1038/s41591-018-0014-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujii T, Naing A, Rolfo C, Hajjar J (2018) Biomarkers of response to immune checkpoint blockade in cancer treatment. Crit Rev Oncol Hematol 130:108–120. https://doi.org/10.1016/j.critrevonc.2018.07.010

    Article  PubMed  Google Scholar 

  15. Alfayez M, Borthakur G (2018) Checkpoint inhibitors and acute myelogenous leukemia: promises and challenges. Expert Rev Hematol 11:373–389. https://doi.org/10.1080/17474086.2018.1459184

    Article  CAS  PubMed  Google Scholar 

  16. Assi R, Kantarjian H, Ravandi F, Daver N (2018) Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune checkpoint inhibitors. Curr Opin Hematol 25:136–145. https://doi.org/10.1097/MOH.0000000000000401

    Article  CAS  PubMed  Google Scholar 

  17. Davids MS, Kim HT, Bachireddy P et al (2016) Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med 375:143–153. https://doi.org/10.1056/NEJMoa1601202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218. https://doi.org/10.1038/nature12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schubert ML, Hoffmann JM, Dreger P, Muller-Tidow C, Schmitt M (2018) Chimeric antigen receptor transduced T cells: tuning up for the next generation. Int J Cancer 142:1738–1747. https://doi.org/10.1002/ijc.31147

    Article  CAS  PubMed  Google Scholar 

  20. Dahlen E, Veitonmaki N, Norlen P (2018) Bispecific antibodies in cancer immunotherapy. Ther Adv Vaccines Immunother 6:3–17. https://doi.org/10.1177/2515135518763280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Satta A, Mezzanzanica D, Caroli F et al (2018) Design, selection and optimization of an anti-TRAIL-R2/anti-CD3 bispecific antibody able to educate T cells to recognize and destroy cancer cells. MAbs. https://doi.org/10.1080/19420862.2018.1494105

    Article  PubMed  PubMed Central  Google Scholar 

  22. Snauwaert S, Vandekerckhove B, Kerre T (2013) Can immunotherapy specifically target acute myeloid leukemic stem cells? Oncoimmunology 2:e22943. https://doi.org/10.4161/onci.22943

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schneider V, Zhang L, Rojewski M et al (2015) Leukemic progenitor cells are susceptible to targeting by stimulated cytotoxic T cells against immunogenic leukemia-associated antigens. Int J Cancer 137:2083–2092. https://doi.org/10.1002/ijc.29583

    Article  CAS  PubMed  Google Scholar 

  24. Greiner J, Schmitt M, Li L et al (2006) Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood 108:4109–4117. https://doi.org/10.1182/blood-2006-01-023127

    Article  CAS  PubMed  Google Scholar 

  25. Greiner J, Ono Y, Hofmann S et al (2012) Mutated regions of nucleophosmin 1 elicit both CD4(+) and CD8(+) T-cell responses in patients with acute myeloid leukemia. Blood 120:1282–1289. https://doi.org/10.1182/blood-2011-11-394395

    Article  CAS  PubMed  Google Scholar 

  26. Yong AS, Keyvanfar K, Eniafe R, Savani BN, Rezvani K, Sloand EM, Goldman JM, Barrett AJ (2008) Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukemia-associated antigens: implications for the graft-versus-leukemia effect and peptide vaccine-based immunotherapy. Leukemia 22:1721–1727. https://doi.org/10.1038/leu.2008.161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmitt M, Schmitt A, Rojewski MT et al (2008) RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 111:1357–1365. https://doi.org/10.1182/blood-2007-07-099366

    Article  CAS  PubMed  Google Scholar 

  28. Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J, Jafarpour B, Boss C, Barrett AJ (2008) Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 111:236–242. https://doi.org/10.1182/blood-2007-08-108241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Greiner J, Schmitt A, Giannopoulos K et al (2010) High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Haematologica 95:1191–1197. https://doi.org/10.3324/haematol.2009.014704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rezvani K, Yong AS, Mielke S et al (2011) Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica 96:432–440. https://doi.org/10.3324/haematol.2010.031674

    Article  CAS  PubMed  Google Scholar 

  31. Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD (2017) Combination immunotherapy: a road map. J Immunother Cancer 5:16. https://doi.org/10.1186/s40425-017-0218-5

    Article  PubMed  PubMed Central  Google Scholar 

  32. Greiner J, Li L, Ringhoffer M et al (2005) Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 106:938–945. https://doi.org/10.1182/blood-2004-12-4787

    Article  CAS  PubMed  Google Scholar 

  33. Greiner J, Hofmann S, Schmitt M, Gotz M, Wiesneth M, Schrezenmeier H, Bunjes D, Dohner H, Bullinger L (2017) Acute myeloid leukemia with mutated nucleophosmin 1: an immunogenic acute myeloid leukemia subtype and potential candidate for immune checkpoint inhibition. Haematologica 102:e499–e501. https://doi.org/10.3324/haematol.2017.176461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu B, Jacobs R, Ghosh N (2018) Checkpoint Inhibitors Hodgkin Lymphoma and Non-Hodgkin Lymphoma. Curr Hematol Malig Rep. https://doi.org/10.1007/s11899-018-0484-4

    Article  PubMed  Google Scholar 

  35. Garcia-Manero G, Daver NG, Montalban-Bravo G et al (2016) A phase II study evaluating the combination of nivolumab (nivo) or ipilimumab (Ipi) with azacitidine in pts with previously treated or untreated myelodysplastic syndromes (MDS). Blood 128:344

    Article  Google Scholar 

  36. Lupo A, Alifano M, Wislez M et al (2018) Biomarkers predictive of PD1/PD-L1 immunotherapy in non-small cell lung cancer. Rev Pneumol Clin. https://doi.org/10.1016/j.pneumo.2018.09.010

    Article  PubMed  Google Scholar 

  37. Flippot R, Escudier B, Albiges L (2018) Immune checkpoint inhibitors: toward new paradigms in renal cell carcinoma. Drugs 78:1443–1457. https://doi.org/10.1007/s40265-018-0970-y

    Article  CAS  PubMed  Google Scholar 

  38. Tarhini A, Kudchadkar RR (2018) Predictive and on-treatment monitoring biomarkers in advanced melanoma: moving toward personalized medicine. Cancer Treat Rev 71:8–18. https://doi.org/10.1016/j.ctrv.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  39. Vlachostergios PJ, Faltas BM (2018) The molecular limitations of biomarker research in bladder cancer. World J Urol. https://doi.org/10.1007/s00345-018-2462-9

    Article  PubMed  Google Scholar 

  40. Tray N, Weber JS, Adams S (2018) Predictive biomarkers for checkpoint immunotherapy: current status and challenges for clinical application. Cancer Immunol Res 6:1122–1128. https://doi.org/10.1158/2326-6066.CIR-18-0214

    Article  CAS  PubMed  Google Scholar 

  41. Constantinidou A, Alifieris C, Trafalis DT (2018) Targeting programmed cell death-1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2018.09.008

    Article  PubMed  Google Scholar 

  42. Giotopoulos G, Huntly BJP (2018) Intratumoral heterogeneity: tools to understand and exploit clone wars in AML. Cancer Cell 34:533–535. https://doi.org/10.1016/j.ccell.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  43. Talati C, Sweet K (2018) Recently approved therapies in acute myeloid leukemia: a complex treatment landscape. Leuk Res 73:58–66. https://doi.org/10.1016/j.leukres.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  44. Abdel-Wahab N, Shah M, Suarez-Almazor ME (2016) Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS ONE 11:e0160221. https://doi.org/10.1371/journal.pone.0160221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Williams P, Basu S, Garcia-Manero G et al (2019) The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer 125:1470–1481. https://doi.org/10.1002/cncr.31896

    Article  CAS  PubMed  Google Scholar 

  46. Kubasch AS, Platzbecker U (2018) Beyond the edge of hypomethylating agents: novel combination strategies for older adults with advanced MDS and AML. Cancers (Basel). https://doi.org/10.3390/cancers10060158

    Article  Google Scholar 

  47. Lichtenegger FS, Krupka C, Haubner S, Kohnke T, Subklewe M (2017) Recent developments in immunotherapy of acute myeloid leukemia. J Hematol Oncol 10:142. https://doi.org/10.1186/s13045-017-0505-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hellmann MD, Rizvi NA, Goldman JW et al (2017) Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol 18:31–41. https://doi.org/10.1016/S1470-2045(16)30624-6

    Article  CAS  PubMed  Google Scholar 

  49. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34. https://doi.org/10.1056/NEJMoa1504030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Massarelli E, William W, Johnson F et al (2018) Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.4051

    Article  PubMed Central  Google Scholar 

  51. Cristescu R, Mogg R, Ayers M et al (2018) Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. https://doi.org/10.1126/science.aar3593

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all patients for the donation of samples.

Funding

This work was supported by grants from BMS (Bristol-Myers Squibb, Study ID: CA184-397) to J. Greiner, and in part by the Deutsche Forschungsgemeinschaft (SFB 1074 project B3) to L. Bullinger.

Author information

Authors and Affiliations

Authors

Contributions

JG designed this study, analyzed and interpreted the data, and wrote the manuscript. MG performed the research, analyzed the data, and reviewed the manuscript. SH included patients and discussed the manuscript. HS provided material and reviewed the manuscript. MW reviewed the manuscript. LB interpreted the data and reviewed the manuscript. HD reviewed the manuscript and provided material. VS analyzed and interpreted the data, developed and performed some research, and wrote the manuscript.

Corresponding author

Correspondence to Jochen Greiner.

Ethics declarations

Conflict of interest

J. Greiner received funds from BMS (Bristol-Myers Squibb); the other authors do not have any competing interests with regard to this study.

Ethical approval and ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Registration details: University of Ulm, approval number 221/14, date 20.10.2014 and approval number 334/09, date 08.02.2010 and Ethics Committee Landesärztekammer Baden-Württemberg, date of approval 21.11.2014, approval file number B-F-2014-105 221/14.

Informed consent

Informed consent was obtained in writing before specimen was taken from all individuals participating in the study. Patients and healthy donors consented to the use of their specimen and data for research and for publication.

Cell authentication

Cell lines were purchased from the DSMZ (German Collection of Microorganisms and Cell Cultures GmbH) and were authenticated: OCI-AML-2 (DSMZ ACC 099), full-matching STR reference profile of OCI-AML-2, authentic; OCI-AML-3 (DSMZ ACC 582), full-matching STR reference profile of OCI-AML-3, authentic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greiner, J., Götz, M., Hofmann, S. et al. Specific T-cell immune responses against colony-forming cells including leukemic progenitor cells of AML patients were increased by immune checkpoint inhibition. Cancer Immunol Immunother 69, 629–640 (2020). https://doi.org/10.1007/s00262-020-02490-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02490-2

Keywords

Navigation