Skip to main content

Advertisement

Log in

Evidence of immune elimination, immuno-editing and immune escape in patients with hematological cancer

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

There is mounting evidence that the immune system can spontaneously clear malignant lesions before they manifest as overt cancer, albeit this activity has been difficult to demonstrate in humans. The calreticulin (CALR) exon 9 mutations are driver mutations in patients with chronic myeloproliferative neoplasms (MPN), which are chronic blood cancers. The CALR mutations generate a neo-antigen that is recognized by patient T cells, and T cells isolated from a patient with a CALR-mutation can recognize and kill autologous CALR-mutant cells. Surprisingly, healthy individuals display frequent and strong T cell responses to the CALR neo-antigens too. Furthermore, healthy individuals display immune responses to all parts of the mutant CALR epitope, and the CALR neo-epitope specific responses are memory T cell responses. These data suggest that although healthy individuals might acquire a CALR mutation, the mutant cells can be eliminated by the immune system. Additionally, a small fraction of healthy individuals harbor a CALR exon 9 mutation. Four healthy individuals carrying CALR mutations underwent a full medical examination including a bone marrow biopsy after a median follow up of 6.2 years. None of these patients displayed any signs of CALR-mutant MPN. Additionally, all healthy individuals displayed strong CALR neo-epitope specific T cell responses suggesting that these healthy individuals retained their CALR-mutant cells in the editing stage for several years. Thus, we suggest that CALR-mutant MPN could be a disease model of cancer immuno-editing, as we have demonstrated that CALR-mutant MPN displays all three stages described in the theory of cancer immuno-editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BCR-ABL1:

Breakpoint cluster region-Abelson murine leukemia virus oncogene homolog

CALR:

Calreticulin

TCM :

Central memory T cell

MPN:

Chronic myeloproliferative neoplasms

TEM :

Effector memory T cell

TEMRA :

Effector memory T cell expressing CD45RA

ET:

Essential thrombocythemia

JAK2:

Janus kinase-2

MART-1:

Melanoma antigen recognized by T-cells

MYD88:

Myeloid differentiation primary response 88

NPM-1:

Nucleophosmine-1

PMF:

Primary myelofibrosis

PV:

Polycythemia vera

TSA:

Tumor specific antigen

References

  1. Stutman O (1974) Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science 183:534–536. https://doi.org/10.1126/science.183.4124.534

    Article  CAS  PubMed  Google Scholar 

  2. Boshoff C, Weiss R (2002) Aids-related malignancies. Nat Rev Cancer 2:373–382. https://doi.org/10.1038/nrc797

    Article  CAS  PubMed  Google Scholar 

  3. Chapman JR, Webster AC, Wong G (2013) Cancer in the transplant recipient. Cold Spring Harb Perspect Med 3:a015677. https://doi.org/10.1101/cshperspect.a015677

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cervinkova M, Kucerova P, Cizkova J (2017) Spontaneous regression of malignant melanoma—is it based on the interplay between host immune system and melanoma antigens? Anticancer Drugs 28:819–830. https://doi.org/10.1097/CAD.0000000000000526

    Article  CAS  PubMed  Google Scholar 

  5. Teulings HE, Overkamp M, Ceylan E et al (2013) Decreased risk of melanoma and nonmelanoma skin cancer in patients with vitiligo: a survey among 1307 patients and their partners. Br J Dermatol 168:162–171. https://doi.org/10.1111/bjd.12111

    Article  CAS  PubMed  Google Scholar 

  6. Posthuma EF, Falkenburg JH, Apperley JF et al (1999) HLA-B8 and HLA-A3 coexpressed with HLA-B8 are associated with a reduced risk of the development of chronic myeloid leukemia. The Chronic Leukemia Working Party of the EBMT. Blood 93:3863–3865

    CAS  PubMed  Google Scholar 

  7. Kuželová K, Brodská B, Fuchs O et al (2015) Altered HLA class I profile associated with type A/D nucleophosmin mutation points to possible anti-nucleophosmin immune response in acute myeloid leukemia. PLoS ONE 10:1–12. https://doi.org/10.1371/journal.pone.0127637

    Article  CAS  Google Scholar 

  8. Burnet M (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13:1–27

    Article  CAS  PubMed  Google Scholar 

  9. Dunn GP, Old LJ, Schreiber RD (2004) The three es of cancer immunoediting. Annu Rev Immunol 22:329–360. https://doi.org/10.1146/annurev.immunol.22.012703.104803

    Article  CAS  PubMed  Google Scholar 

  10. Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting : from immuno- surveillance to tumor escape. Nat Immunol 3:991–998. https://doi.org/10.1038/ni1102-991

    Article  CAS  PubMed  Google Scholar 

  11. Blankenstein T, Coulie PG, Gilboa E, Jaffee EM (2012) The determinants of tumour immunogenicity. Nat Rev Cancer 12:307–313. https://doi.org/10.1038/nrc3246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14:135–146. https://doi.org/10.1038/nrc3670

    Article  CAS  PubMed  Google Scholar 

  13. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of ras mutations in cancer. Cancer Res 72:2457–2467. https://doi.org/10.1158/0008-5472.CAN-11-2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qin H, Chen W, Takahasi M et al (1995) CD4+ T-cell immunity to mutated ras protein in pancreatic and colon cancer patients. Cancer Res 55:2984–2987

    CAS  PubMed  Google Scholar 

  15. Jung S, Schluesener HJ (1991) Human T lymphocytes recognize a peptide of single point-mutated, oncogenic ras proteins. J Exp Med 173:273–276. https://doi.org/10.1084/jem.173.1.273

    Article  CAS  PubMed  Google Scholar 

  16. Gedde-Dahl T, Eriksen JA, Thorsby E, Gaudernack G (1992) T-cell responses against products of oncogenes: generation and characterization of human T-cell clones specific for p21 ras-derived synthetic peptides. Hum Immunol 33:266–274. https://doi.org/10.1016/0198-8859(92)90334-J

    Article  CAS  PubMed  Google Scholar 

  17. Wedén S, Klemp M, Gladhaug IP et al (2011) Long-term follow-up of patients with resected pancreatic cancer following vaccination against mutant K-ras. Int J Cancer 128:1120–1128. https://doi.org/10.1002/ijc.25449

    Article  CAS  PubMed  Google Scholar 

  18. Shono Y, Tanimura H, Iwahashi M et al (2003) Specific T-cell immunity against Ki-ras peptides in patients with pancreatic and colorectal cancers. Br J Cancer 88:530–536. https://doi.org/10.1038/sj.bjc.6600697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kubuschok B, Neumann F, Breit R et al (2006) Naturally occurring T-cell response against mutated p21 Ras oncoprotein in pancreatic cancer. Clin Cancer Res 12:1365–1372. https://doi.org/10.1158/1078-0432.CCR-05-1672

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi M, Chen W, Byrd DR et al (1995) Antibody to ras proteins in patients with colon cancer. Clin Cancer Res 1:1071–1077

    CAS  PubMed  Google Scholar 

  21. Somasundaram R, Swoboda R, Caputo L et al (2006) Human leukocyte antigen-A2-restricted CTL responses to mutated BRAF peptides in melanoma patients. Cancer Res 66:3287–3293. https://doi.org/10.1158/0008-5472.CAN-05-1932

    Article  CAS  PubMed  Google Scholar 

  22. Butt NM, Rojas JM, Wang L et al (2005) Circulating bcr-abl-specific CD8+ T cells in chronic myeloid leukemia patients and healthy subjects. Haematologica 90:1315–1323

    CAS  PubMed  Google Scholar 

  23. Rusakiewicz S, Madrigal A, Travers P, Dodi AI (2009) BCR/ABL-specific CD8+ T cells can be detected from CML patients, but are only expanded from healthy donors. Cancer Immunol Immunother 58:1449–1457. https://doi.org/10.1007/s00262-009-0703-x

    Article  CAS  PubMed  Google Scholar 

  24. Treon SP, Xu L, Yang G et al (2012) MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med 367:826–833. https://doi.org/10.1056/NEJMoa1200710

    Article  CAS  PubMed  Google Scholar 

  25. Nelde A, Walz JS, Kowalewski DJ et al (2017) HLA class I-restricted MYD88 L265P-derived peptides as specific targets for lymphoma immunotherapy. Oncoimmunology 6:1–11. https://doi.org/10.1080/2162402X.2016.1219825

    Article  CAS  Google Scholar 

  26. Nielsen JS, Chang AR, Wick DA et al (2017) Mapping the human T cell repertoire to recurrent driver mutations in MYD88 and EZH2 in lymphoma. Oncoimmunology 6:e1321184. https://doi.org/10.1080/2162402X.2017.1321184

    Article  PubMed  PubMed Central  Google Scholar 

  27. Falini B, Mecucci C, Tiacci E et al (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352:254–266. https://doi.org/10.1056/NEJMoa041974

    Article  CAS  PubMed  Google Scholar 

  28. Greiner J, Schneider V, Schmitt M et al (2013) Immune responses against the mutated region of cytoplasmatic NPM1 might contribute to the favorable clinical outcome of AML patients with NPM1 mutations (NPM1mut). Blood 122:1087–1088

    Article  CAS  PubMed  Google Scholar 

  29. Pittet MJ, Valmori D, Dunbar PR et al (1999) High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med 190:705–715. https://doi.org/10.1084/jem.190.5.705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spivak JL (2017) Myeloproliferative neoplasms. N Engl J Med 376:2168–2181. https://doi.org/10.1056/NEJMra1406186

    Article  CAS  PubMed  Google Scholar 

  31. Levine RL, Gilliland DG (2008) Myeloproliferative disorders. Blood 112:2190–2198. https://doi.org/10.1182/blood-2008-03-077966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levine RL, Wadleigh M, Cools J et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397. https://doi.org/10.1016/j.ccr.2005.03.023

    Article  CAS  PubMed  Google Scholar 

  33. Kralovics R, Passamonti F, Buser AAS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790. https://doi.org/10.1056/NEJMoa051113

    Article  CAS  PubMed  Google Scholar 

  34. Nangalia J, Massie CE, Baxter EJ et al (2013) Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 369:2391–2405. https://doi.org/10.1056/NEJMoa1312542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klampfl T, Gisslinger H, Harutyunyan AS et al (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 369:2379–2390. https://doi.org/10.1056/NEJMoa1311347

    Article  CAS  PubMed  Google Scholar 

  36. Holmström MO, Riley CH, Svane IM et al (2016) The CALR exon 9 mutations are shared neoantigens in patients with CALR mutant chronic myeloproliferative neoplasms. Leukemia 30:2413–2416. https://doi.org/10.1038/leu.2016.233

    Article  CAS  PubMed  Google Scholar 

  37. Holmström MO, Martinenaite E, Ahmad SM et al (2018) The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy. Leukemia 32:429–437. https://doi.org/10.1038/leu.2017.214

    Article  CAS  PubMed  Google Scholar 

  38. Holmström MO, Ahmad SM, Klausen U et al (2019) High frequencies of circulating memory T cells specific for calreticulin exon 9 mutations in healthy individuals. Blood Cancer J 9:8. https://doi.org/10.1038/s41408-018-0166-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang JC, Chen C, Kundra A et al (2019) Programmed cell death receptor (PD-1) ligand (PD-L1) expression in Philadelphia chromosome-negative myeloproliferative neoplasms. Leuk Res 79:52–59. https://doi.org/10.1016/j.leukres.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  40. Keilholz U, Weber J, Finke JH et al (2002) Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J Immunother 25:97–138

    Article  PubMed  Google Scholar 

  41. Cordua S, Kjaer L, Skov V et al (2019) Prevalence and phenotypes of JAK2 V617F and Calreticulin mutations in a Danish general population. Blood 134:469–479. https://doi.org/10.1182/blood.2019001113

    Article  CAS  PubMed  Google Scholar 

  42. Hsieh C-L, Chen D-S, Hwang L-H (2002) Tumor-induced immunosuppression: a barrier to immunotherapy of large tumors by cytokine-secreting tumor vaccine. Hum Gene Ther 11:681–692. https://doi.org/10.1089/10430340050015581

    Article  Google Scholar 

  43. Holmström MO, Novotny GW, Petersen J et al (2019) Progression of JAK2- mutant polycythemia vera to CALR -mutant myelofibrosis severely impacts on disease phenotype and response to therapy. Leuk Lymphoma 1:1–4. https://doi.org/10.1080/10428194.2019.1633634

    Article  Google Scholar 

  44. Massari F, Santoni M, Ciccarese C et al (2015) PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer Treat Rev 41:114–121. https://doi.org/10.1016/J.CTRV.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  45. Holmström MO, Hasselbalch HC (2019) Cancer immune therapy for myeloid malignancies: present and future. Semin Immunopathol 41:97–109. https://doi.org/10.1007/s00281-018-0693-x

    Article  CAS  PubMed  Google Scholar 

  46. Moodie Z, Price L, Gouttefangeas C et al (2010) Response definition criteria for ELISPOT assays revisited. Cancer Immunol Immunother 59:1489–1501. https://doi.org/10.1007/s00262-010-0875-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Merete Jonassen, laboratory technician, for excellent technical assistance and for teaching Morten Orebo Holmström to perform experiments.

Funding

The writing of this paper and the experiments described herein were partially funded by the Danish Cancer Society (Kræftens Bekæmpelse), Grant numbers R149-A10159-B120 and R90-A6143-14-S2, awarded to Hans Carl Hasselbalch.

Author information

Authors and Affiliations

Authors

Contributions

MOH: designed the studies, performed the experiments, and wrote the manuscript. SC: designed the studies. VS: designed the studies and performed experiments. LK: designed the studies and performed experiments. NP: designed the studies and performed experiments. CE: designed the studies and performed experiments. HCH: designed the studies and wrote the manuscript. MHA: designed the studies and wrote the manuscript.

Corresponding author

Correspondence to Morten Orebo Holmström.

Ethics declarations

Conflict of interest

Morten Orebo Holmström, Mads Hald Andersen, and Hans Carl Hasselbalch have filed a patent regarding CALR exon 9 mutations as targets for cancer immune therapy. The patent has been transferred to Zealand University Hospital, Zealand Region and to Herlev Hospital, Capital Region, Denmark, according to Danish Law concerning inventions created at public research institutions. The authors declare that there are no other conflicts of interest.

Ethical standards

All projects described herein were approved by the local Ethics Committee in Zealand Region, Denmark, with the approval numbers: SJ-456, SJ-585, SJ-114, SJ-113, and SJ-452.

Informed consent

All patients and healthy donors provided both written and oral informed consent on the use of their biological material for research and for publication. The consent was received before the sampling of biological material from the individual.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmström, M.O., Cordua, S., Skov, V. et al. Evidence of immune elimination, immuno-editing and immune escape in patients with hematological cancer. Cancer Immunol Immunother 69, 315–324 (2020). https://doi.org/10.1007/s00262-019-02473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02473-y

Keywords

Navigation