Skip to main content

Translational immune correlates of indirect antibody immunization in a randomized phase II study using scheduled combination therapy with carboplatin/paclitaxel plus oregovomab in ovarian cancer patients

A Correction to this article was published on 26 March 2020

This article has been updated


The standard-of-care (SOC) first-line therapy for ovarian cancer (OC) patients is plagued with high relapse rates. Several studies indicated the immune system’s prominent role changing the disease course in OC patients. Chemo-immunotherapy regimens, currently being explored, include oregovomab, which is a monoclonal antibody specific for the OC associated antigen carbohydrate/cancer antigen 125 (CA125) that yielded promising results when administered together with SOC in a previous study. The QPT-ORE-002 multi-site phase II randomized study demonstrated that in patients with advanced OC, oregovomab combined with first-line SOC improved overall and progression-free survival, compared to SOC alone. The study included an Italian cohort in which we demonstrated that adding oregovomab to SOC resulted in increased patient numbers with amplified CA125-specific CD8+T lymphocytes/ml peripheral blood counts, which might explain the improved therapeutic effect of SOC + oregovomab over SOC alone. Predictive for oregovomab efficacy was a less suppressive immune environment at baseline as indicated by low numbers of circulating myeloid-derived suppressor cells, subset type 4, and a low neutrophil-and-monocyte to lymphocyte ratio.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Change history

  • 26 March 2020

    The original version of this article unfortunately contained a mistake.



Analysis of variance


Carbohydrate/cancer antigen 125


Confidence interval


Dendritic cell


Eastern Cooperative Oncology Group


Hazard ratio


Immune complex


Immature dendritic cell


Mature dendritic cell


Neutrophil-to-lymphocyte ratio




Neutrophil-and-monocyte-to-lymphocyte ratio


Ovarian cancer


Overall survival


Relapse-free survival


Residual tumor


Staphylococcal enterotoxin B


Standard of care


Tumor-infiltrating lymphocytes


  1. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio MGR, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213.

    CAS  Article  PubMed  Google Scholar 

  2. Mariya T, Hirohashi Y, Torigoe T, Asano T, Kuroda T, Yasuda K, Mizuuchi M, Sonoda T, Saito T, Sato N (2014) Prognostic impact of human leukocyte antigen class I expression and association of platinum resistance with immunologic profiles in epithelial ovarian cancer. Cancer Immunol Res 2(12):1220–1229.

    CAS  Article  PubMed  Google Scholar 

  3. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8 + T lymphocytes are prognostic factors of human ovarian cancer. Process Natl Acad Sci USA 104(9):3360–3365.

    CAS  Article  Google Scholar 

  4. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949.

    CAS  Article  PubMed  Google Scholar 

  5. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8 + tumor-infiltrating lymphocytes and a high CD8 +/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Process Natl Acad Sci USA 102(51):18538–18543.

    CAS  Article  Google Scholar 

  6. Preston CC, Maurer MJ, Oberg AL, Visscher DW, Kalli KR, Hartmann LC, Goode EL, Knutson KL (2013) The ratios of CD8 + T cells to CD4 + CD25 + FOXP3 + and FOXP3- T cells correlate with poor clinical outcome in human serous ovarian cancer. PLoS One 8(11):e80063.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Paijens ST, Leffers N, Daemen T, Helfrich W, Boezen HM, Cohlen BJ, Melief CJ, de Bruyn M, Nijman HW (2018) Antigen-specific active immunotherapy for ovarian cancer. Cochrane Database Syst Rev 9:CD007287.

    Article  PubMed  Google Scholar 

  8. Nustad K, Bast RC Jr, Brien TJ, Nilsson O, Seguin P, Suresh MR, Saga T, Nozawa S, Bormer OP, de Bruijn HW, Nap M, Vitali A, Gadnell M, Clark J, Shigemasa K, Karlsson B, Kreutz FT, Jette D, Sakahara H, Endo K, Paus E, Warren D, Hammarstrom S, Kenemans P, Hilgers J (1996) Specificity and affinity of 26 monoclonal antibodies against the CA 125 antigen: first report from the ISOBM TD-1 workshop. International Society for Oncodevelopmental Biology and Medicine. Tumour Biol 17(4):196–219

    CAS  Article  Google Scholar 

  9. Capstick V, Maclean GD, Suresh MR, Bodnar D, Lloyd S, Shepert L, Longenecker BM, Krantz M (1991) Clinical evaluation of a new two-site assay for CA125 antigen. Int J Biol Markers 6(2):129–135

    CAS  Article  Google Scholar 

  10. Piché A (2016) Pathobiological role of MUC16 mucin (CA125) in ovarian cancer: much more than a tumor biomarker. World J Obstet Gynecol 5(1):39–49.

    Article  Google Scholar 

  11. Noujaim AA, Schultes BC, Baum RP, Madiyalakan R (2001) Induction of CA125-specific B and T cell responses in patients injected with MAb-B43.13–evidence for antibody-mediated antigen-processing and presentation of CA125 in vivo. Cancer Biother Radiopharm 16(3):187–203.

    CAS  Article  PubMed  Google Scholar 

  12. Berek JS, Taylor PT, Gordon A, Cunningham MJ, Finkler N, Orr J Jr, Rivkin S, Schultes BC, Whiteside TL, Nicodemus CF (2004) Randomized, placebo-controlled study of oregovomab for consolidation of clinical remission in patients with advanced ovarian cancer. J Clin Oncol 22(17):3507–3516.

    CAS  Article  PubMed  Google Scholar 

  13. Braly P, Nicodemus CF, Chu C, Collins Y, Edwards R, Gordon A, McGuire W, Schoonmaker C, Whiteside T, Smith LM, Method M (2009) The Immune adjuvant properties of frontline carboplatin-paclitaxel: a randomized phase 2 study of alternative schedules of intravenous oregovomab chemoimmunotherapy in advanced ovarian cancer. J Immunother 32(1):54–65.

    CAS  Article  PubMed  Google Scholar 

  14. Ferrandina G, Braly PS, Terranova C, Salutari V, Ricci C, Raspagliesi F, Lorusso D, Panici PB, Scollo P, Plotti F, Brewer M, Method MW, Holloway RW, Madiyalakan M, Nicodemus CF, Pecorelli SL, Scambia G, Angioli R (2017) A randomized phase II study assessing an optimized schedule of oregovomab (O) anti-CA125 vaccination with carboplatin paclitaxel (CP) relative to CP alone in Frontline treatment of optimally cytoreduced stage III/IV ovarian cancer (EOC). J Clin Oncol 35(15_suppl):5536.

    Article  Google Scholar 

  15. Marshall HT, Djamgoz MBA (2018) Immuno-oncology: emerging targets and combination therapies. Front Oncol 8:315.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Santegoets SJ, Dijkgraaf EM, Battaglia A, Beckhove P, Britten CM, Gallimore A, Godkin A, Gouttefangeas C, de Gruijl TD, Koenen HJ, Scheffold A, Shevach EM, Staats J, Tasken K, Whiteside TL, Kroep JR, Welters MJ, van der Burg SH (2015) Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol Immunother 64(10):1271–1286.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Munn DH, Sharma MD, Johnson TS (2018) Treg destabilization and reprogramming: implications for cancer immunotherapy. Cancer Res 78(18):5191–5199.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181(7):4666–4675

    CAS  Article  Google Scholar 

  20. Tcyganov E, Mastio J, Chen E, Gabrilovich DI (2018) Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol 51:76–82.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Moses K, Brandau S (2016) Human neutrophils: their role in cancer and relation to myeloid-derived suppressor cells. Semin Immunol 28(2):187–196.

    CAS  Article  PubMed  Google Scholar 

  22. Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, Rustin MH, Taams LS, Beverley PC, Macallan DC, Akbar AN (2006) Human CD4 + CD25hi Foxp3 + regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116(9):2423–2433.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Facciabene A, Motz GT, Coukos G (2012) T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 72(9):2162–2171.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang X, Zhang W, Yuan X, Fu M, Qian H, Xu W (2016) Neutrophils in cancer development and progression: roles, mechanisms, and implications (Review). Int J Oncol 49(3):857–867.

    CAS  Article  PubMed  Google Scholar 

  25. Minami S, Ihara S, Komuta K (2018) Pretreatment lymphocyte to monocyte ratio as a prognostic marker for advanced pulmonary squamous cell carcinoma treated with chemotherapy. J Clin Med Res 10(8):657–664.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Proctor MJ, McMillan DC, Morrison DS, Fletcher CD, Horgan PG, Clarke SJ (2012) A derived neutrophil to lymphocyte ratio predicts survival in patients with cancer. Br J Cancer 107(4):695–699.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Kim YJ, Lee I, Chung YS, Nam E, Kim S, Kim SW, Kim YT, Lee JY (2018) Pretreatment neutrophil-to-lymphocyte ratio and its dynamic change during neoadjuvant chemotherapy as poor prognostic factors in advanced ovarian cancer. Obstet Gynecol Sci 61(2):227–234.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Baert T, Van Camp J, Vanbrabant L, Busschaert P, Laenen A, Han S, Van Nieuwenhuysen E, Vergote I, Coosemans A (2018) Influence of CA125, platelet count and neutrophil to lymphocyte ratio on the immune system of ovarian cancer patients. Gynecol Oncol 150(1):31–37.

    Article  PubMed  Google Scholar 

  29. Komura N, Mabuchi S, Yokoi E, Kozasa K, Kuroda H, Sasano T, Matsumoto Y, Kimura T (2018) Comparison of clinical utility between neutrophil count and neutrophil-lymphocyte ratio in patients with ovarian cancer: a single institutional experience and a literature review. Int J Clin Oncol 23(1):104–113.

    Article  PubMed  Google Scholar 

  30. Zhou M, Li L, Wang X, Wang C, Wang D (2018) Neutrophil-to-lymphocyte ratio and platelet count predict long-term outcome of stage iiic epithelial ovarian cancer. Cell Physiol Biochem 46(1):178–186.

    CAS  Article  PubMed  Google Scholar 

  31. Buzzonetti A, Fossati M, Catzola V, Scambia G, Fattorossi A, Battaglia A (2014) Immunological response induced by abagovomab as a maintenance therapy in patients with epithelial ovarian cancer: relationship with survival-a substudy of the MIMOSA trial. Cancer Immunol Immunother 63(10):1037–1045.

    CAS  Article  PubMed  Google Scholar 

  32. Schultes BC, Whiteside TL (2003) Monitoring of immune responses to CA125 with an IFN-g ELISPOT assay. J Immunol Methods 279:1–15.

    CAS  Article  PubMed  Google Scholar 

  33. Mandruzzato S, Brandau S, Britten CM, Bronte V, Damuzzo V, Gouttefangeas C, Maurer D, Ottensmeier C, van der Burg SH, Welters MJ, Walter S (2016) Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunol Immunother 65(2):161–169.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25(18):2546–2553.

    CAS  Article  PubMed  Google Scholar 

  35. Wang PF, Song SY, Wang TJ, Ji WJ, Li SW, Liu N, Yan CX (2018) Prognostic role of pretreatment circulating MDSCs in patients with solid malignancies: a meta-analysis of 40 studies. Oncoimmunology 7(10):e1494113.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, Hilf N, Schoor O, Fritsche J, Mahr A, Maurer D, Vass V, Trautwein C, Lewandrowski P, Flohr C, Pohla H, Stanczak JJ, Bronte V, Mandruzzato S, Biedermann T, Pawelec G, Derhovanessian E, Yamagishi H, Miki T, Hongo F, Takaha N, Hirakawa K, Tanaka H, Stevanovic S, Frisch J, Mayer-Mokler A, Kirner A, Rammensee HG, Reinhardt C, Singh-Jasuja H (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18(8):1254–1261.

    CAS  Article  PubMed  Google Scholar 

  37. Martens A, Wistuba-Hamprecht K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Ascierto PA, Di Giacomo AM, Maio M, Schilling B, Sucker A, Schadendorf D, Hassel JC, Eigentler TK, Martus P, Wolchok JD, Blank C, Pawelec G, Garbe C, Weide B (2016) Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin Cancer Res 22(12):2908–2918.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, Solomon M, Selby W, Alexander SI, Nanan R, Kelleher A, de St Fazekas, Groth B (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203(7):1693–1700.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, de St Fazekas, Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4 + T reg cells. J Exp Med 203(7):1701–1711.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S, Denkert C (2012) Cutoff Finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS One 7(12):e51862.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Group F-NBW (2016) BEST (Biomarkers, EndpointS, and other Tools) resource [Internet]. understanding prognostic versus predictive biomarkers. Food and Drug Administration (US). Co-published by National Institutes of Health (US), Bethesda (MD). Silver Spring (MD)

  42. van der Sluis TC, van Duikeren S, Huppelschoten S, Jordanova ES, Beyranvand Nejad E, Sloots A, Boon L, Smit VT, Welters MJ, Ossendorp F, van de Water B, Arens R, van der Burg SH, Melief CJ (2015) Vaccine-induced tumor necrosis factor-producing T cells synergize with cisplatin to promote tumor cell death. Clin Cancer Res 21(4):781–794.

    Article  PubMed  Google Scholar 

  43. Wang X, Liu Y, Diao Y, Gao N, Wan Y, Zhong J, Zheng H, Wang Z, Jin G (2018) Gastric cancer vaccines synthesized using a TLR7 agonist and their synergistic antitumor effects with 5-fluorouracil. J Transl Med 16(1):120.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28(6):690–714.

    CAS  Article  PubMed  Google Scholar 

  45. Vacchelli E, Ma Y, Baracco EE, Zitvogel L, Kroemer G (2016) Yet another pattern recognition receptor involved in the chemotherapy-induced anticancer immune response: formyl peptide receptor-1. Oncoimmunology 5(5):e1118600.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu J, Waxman DJ (2018) Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy. Cancer Lett 419:210–221.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Sade-Feldman M, Kanterman J, Klieger Y, Ish-Shalom E, Olga M, Saragovi A, Shtainberg H, Lotem M, Baniyash M (2016) Clinical significance of circulating CD33 + CD11b + HLA-DR- myeloid cells in patients with stage IV melanoma treated with ipilimumab. Clin Cancer Res 22(23):5661–5672.

    CAS  Article  PubMed  Google Scholar 

  48. Hansen GL, Gaudernack G, Brunsvig PF, Cvancarova M, Kyte JA (2015) Immunological factors influencing clinical outcome in lung cancer patients after telomerase peptide vaccination. Cancer Immunol Immunother 64(12):1609–1621.

    CAS  Article  PubMed  Google Scholar 

  49. Ostrand-Rosenberg S, Fenselau C (2018) Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J Immunol 200(2):422–431.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Dominguez GA, Condamine T, Mony S, Hashimoto A, Wang F, Liu Q, Forero A, Bendell J, Witt R, Hockstein N, Kumar P, Gabrilovich DI (2017) Selective targeting of myeloid-derived suppressor cells in cancer patients using DS-8273a, an agonistic TRAIL-R2 antibody. Clin Cancer Res 23(12):2942–2950.

    CAS  Article  PubMed  Google Scholar 

  51. Liu Y, Wei G, Cheng WA, Dong Z, Sun H, Lee VY, Cha SC, Smith DL, Kwak LW, Qin H (2018) Targeting myeloid-derived suppressor cells for cancer immunotherapy. Cancer Immunol Immunother 67(8):1181–1195.

    CAS  Article  PubMed  Google Scholar 

  52. Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, Utikal J, Umansky V (2018) Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front Immunol 9:398.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Clappaert EJ, Murgaski A, Van Damme H, Kiss M, Laoui D (2018) Diamonds in the rough: harnessing tumor-associated myeloid cells for cancer therapy. Front Immunol 9:2250.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Kotsakis A, Koinis F, Katsarou A, Gioulbasani M, Aggouraki D, Kentepozidis N, Georgoulias V, Vetsika EK (2016) Prognostic value of circulating regulatory T cell subsets in untreated non-small cell lung cancer patients. Sci Rep 6:39247.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Xu T, Lu J, An H (2017) The relative change in regulatory T cells/T helper lymphocytes ratio as parameter for prediction of therapy efficacy in metastatic colorectal cancer patients. Oncotarget 8(65):109079–109093.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Riemann D, Cwikowski M, Turzer S, Giese T, Grallert M, Schutte W, Seliger B (2019) Blood immune cell biomarkers in lung cancer. Clin Exp Immunol 195(2):179–189.

    CAS  Article  PubMed  Google Scholar 

  57. Bohm S, Montfort A, Pearce OMT, Topping J, Chakravarty P, Everitt GLA, Clear A, McDermott JR, Ennis D, Dowe T, Fitzpatrick A, Brockbank EC, Lawrence AC, Jeyarajah A, Faruqi AZ, McNeish IA, Singh N, Lockley M, Bohm FRB (2016) Neoadjuvant chemotherapy modulates the immune microenvironment in metastases of tubo-ovarian high-grade serous carcinoma. Clin Cancer Res 22(12):3025–3036.

    CAS  Article  PubMed  Google Scholar 

  58. Pircher A, Gamerith G, Amann A, Reinold S, Popper H, Gächter A, Palla G, Wöll E, Jamnig H, Gastl G, Wolf AM, Hilbe W, Wolf D (2014) Neoadjuvant chemo-immunotherapy modifies CD4 + CD25 + regulatoryT cells (Treg) in non-small cell lung cancer (NSCLC) patients. Lung Cancer 85:81–87.

    Article  PubMed  Google Scholar 

  59. Shoji SH, Tada K, Kitano S, Nishimura T, Shimada Y, Nagashima K, Aoki K, Hiraoka N, Honma Y, Iwasa S, Takashima A, Kato K, Boku N, Honda K, Yamada T, Heike Y, Hamaguchi T (2017) The peripheral immune status of granulocytic myeloid-derived suppressor cells correlates the survival in advanced gastric cancer patients receiving cisplatin-based chemotherapy. Oncotarget 8(56):95083–95094. 2017 Nov 10)

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jiang T, Qiao M, Zhao C, Li X, Gao G, Su C, Ren S, Zhou C (2018) Pretreatment neutrophil-to-lymphocyte ratio is associated with outcome of advanced-stage cancer patients treated with immunotherapy: a meta-analysis. Cancer Immunol Immunother 67(5):713–727.

    Article  PubMed  Google Scholar 

  61. Sacdalan DB, Lucero JA, Sacdalan DL (2018) Prognostic utility of baseline neutrophil-to-lymphocyte ratio in patients receiving immune checkpoint inhibitors: a review and meta-analysis. Onco Targets Ther 11:955–965.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Walankiewicz M, Grywalska E, Polak G, Kotarski J, Siwicka-Gieroba DJ, Rolinski J (2017) Myeloid-derived suppressor cells in ovarian cancer: friend or foe? Cent Eur J Immunol 42(4):383–389.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Uribe-Querol E, Rosales C (2015) Neutrophils in cancer: two sides of the same coin. J Immunol Res 2015:983698.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16(7):431–446.

    CAS  Article  Google Scholar 

  65. De Santo C, Arscott R, Booth S, Karydis I, Jones M, Asher R, Salio M, Middleton M, Cerundolo V (2010) Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 11(11):1039–1046.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Zhou J, Nefedova Y, Lei A, Gabrilovich D (2018) Neutrophils and PMN-MDSC: their biological role and interaction with stromal cells. Semin Immunol 35:19–28.

    CAS  Article  PubMed  Google Scholar 

Download references


This study was funded by OncoQuest Inc (Edmonton, AB, Canada).

Author information

Authors and Affiliations



Conception and design: Alessandra Battaglia, Andrea Fattorossi, Madi R. Madiyalakan, Christopher Nicodemus and Giovanni Scambia. Development of methodology: Alessandra Battaglia, Alexia Buzzonetti, Andrea Fattorossi and Marco Fossati. Acquisition and analysis of data: Alexia Buzzonetti and Marco Fossati. Data interpretation: Alessandra Battaglia and Andrea Fattorossi. Statistical analysis: Alessandra Battaglia and Yolanda D. Mahnke with the help of ZellNet (Fort Lee, NJ, USA). Writing and reviewing of manuscript: Alessandra Battaglia, Andrea Fattorossi, Madi R. Madiyalakan, Yolanda D. Mahnke, Christopher Nicodemus and Giovanni Scambia.

Corresponding author

Correspondence to Alessandra Battaglia.

Ethics declarations

Conflict of interest

Yolanda D. Mahnke is an immunology advisor to OncoQuest. Christopher Nicodemus is a consultant to OncoQuest, Inc. and owns shares in Quest PharmaTech, Edmonton Alberta. Madi R. Madiyalakan is an employee of OncoQuest Inc. and Quest PharmaTech and owns shares in OncoQuest Inc. and Quest PharmaTech. The authors declare that there is no other conflict of interest.

Ethical approval

This QPT-ORE-002 study (clinical trial information: NCT01616303) was performed in accordance with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. It was approved by the following institutional ethics committees:

Study site numberLocationEthics committee
001Campus Biomedico University, Rome, ItalyComitato Etico dell’Università Campus Bio Medico di Roma
Via Alvaro del Portillo, 200
00128 Rome
002Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, ItalyComitato Etico dell’Università Cattolica del Sacro Cuore e Annesso Policlinico “A. Gemelli”
Largo Francesco Vito, 1
00168 Rome
003Istituto Nazionale Tumori-IRCCS, Milan, ItalyComitato Etico della Fondazione IRCCS “Istituto Nazionale dei Tumori”
Via G. Venezian, 1
20133 Milan
005Azienda Ospedaliera Cannizzaro, Catania, ItalyComitato Etico Catania 1
Via S. Sofia, 78
95123 Catania
006Azienda Ospedali Riuniti di Bergamo, Bergamo, ItalyComitato Etico della Provincia di Bergamo
Piazza OMS, 1
24127 Bergamo
007Policlinico Umberto I, Rome, ItalyComitato Etico dell’Università Sapienza
Viale del Policlinico, 155
00161 Rome

Informed consent

All patients included in the study provided written informed consent according to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. The informed consent, which included consent to the treatment, use of their biological specimen (peripheral blood) and data acquisition and processing, was obtained from patients prior to the initiation of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Some of the results included in this paper were previously published in a poster at the 20th biennial international meeting (November 4–7, 2017, Vienna, Austria) of the European Society of Gynaecological Oncology (ESGO).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 479 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Battaglia, A., Buzzonetti, A., Fossati, M. et al. Translational immune correlates of indirect antibody immunization in a randomized phase II study using scheduled combination therapy with carboplatin/paclitaxel plus oregovomab in ovarian cancer patients. Cancer Immunol Immunother 69, 383–397 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Oregovomab
  • Ovarian cancer
  • Immune response
  • Predictive biomarkers
  • Personalized medicine