Skip to main content

Advertisement

Log in

The promise and peril of targeting cell metabolism for cancer therapy

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

A major challenge of cancer immunotherapy is the potential for undesirable effects on bystander cells and tumor-associated immune cells. Fundamentally, we need to understand what effect targeting tumor metabolism has upon the metabolism and phenotype of tumor-associated leukocytes, whose function can be critical for effective cancer therapeutic strategies. Undesirable effects of cancer therapeutics are a major reason for drug-associated toxicity, which confounds drug dosing and efficacy. As with any chemotherapeutic agent, drugs targeting tumor metabolism will exert potent effects on host stromal cells and tumor-associated leukocytes. Any drug targeting glycolysis, for example, could metabolically starve tumor-infiltrating T cells, inhibit their effector function and enable tumor progression. The targeting of oxidative phosphorylation in tumors will have complex effects on the polarization and function of tumor-associated macrophages. In short, we need to improve our understanding of tumor and immune cell metabolism and devise ways to specifically target tumors without compromising necessary host metabolism. Exploiting cell-specific metabolic pathways to directly target tumor cells may minimize detrimental effects on tumor-associated leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2-DG:

2-deoxy-D-glucose

ATP:

Adenosine triphosphate

HIF-1α:

Hypoxia-induced factor 1 alpha

IFNγ:

Interferon gamma

Irg1:

Immune-responsive gene 1

Keap1:

Kelch like ECH associated protein 1

MAPK:

Mitogen-activated protein kinase

MDSC:

Myeloid-derived suppressor cell

NADPH:

Nicotinamide adenine dinucleotide phosphate

Nrf2:

Nuclear factor erythroid 2-related factor

OXPHOS:

Oxidative phosphorylation

PDK:

Pyruvate dehydrogenase kinase

ROS:

Reactive oxygen species

SDH:

Succinate dehydrogenase

TAM:

Tumor associated macrophage

VEGF:

Vascular endothelial growth factor

References

  1. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899. https://doi.org/10.1038/nrc1478

    Article  CAS  PubMed  Google Scholar 

  2. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185. https://doi.org/10.1016/j.cmet.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  3. Pan JG, Mak TW (2007) Metabolic targeting as an anticancer strategy: dawn of a new era? Sci STKE. https://doi.org/10.1126/stke.3812007pe14

    Article  PubMed  Google Scholar 

  4. Gill KS, Fernandes P, O’Donovan TR, McKenna SL, Doddakula KK, Power DG, Soden DM, Forde PF (2016) Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response. Biochim Biophys Acta 1866:87–105. https://doi.org/10.1016/j.bbcan.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  5. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD et al (2007) A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51. https://doi.org/10.1016/j.ccr.2006.10.020

    Article  CAS  PubMed  Google Scholar 

  6. Soberanes S, Misharin AV, Jairaman A, Morales-Nebreda L, McQuattie-Pimentel AC, Cho T, Hamanaka RB, Meliton AY et al (2019) Metformin targets mitochondrial electron transport to reduce air-pollution-induced thrombosis. Cell Metab 29(335–47):e5. https://doi.org/10.1016/j.cmet.2018.09.019

    Article  CAS  Google Scholar 

  7. Schockel L, Glasauer A, Basit F, Bitschar K, Truong H, Erdmann G, Algire C, Hagebarth A et al (2015) Targeting mitochondrial complex I using BAY 87-2243 reduces melanoma tumor growth. Cancer Metab 3:11. https://doi.org/10.1186/s40170-015-0138-0

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu Y (2006) Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis 9:230–234. https://doi.org/10.1038/sj.pcan.4500879

    Article  CAS  PubMed  Google Scholar 

  9. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241. https://doi.org/10.1016/j.cell.2015.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pacella I, Procaccini C, Focaccetti C, Miacci S, Timperi E, Faicchia D, Severa M, Rizzo F et al (2018) Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci USA 115:E6546–E6555. https://doi.org/10.1073/pnas.1720113115

    Article  CAS  PubMed  Google Scholar 

  11. Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68:2561–2563. https://doi.org/10.1158/0008-5472.CAN-07-6229

    Article  CAS  PubMed  Google Scholar 

  12. Al-Khami AA, Rodriguez PC, Ochoa AC (2016) Metabolic reprogramming of myeloid-derived suppressor cells (MDSC) in cancer. Oncoimmunology 5:e1200771. https://doi.org/10.1080/2162402X.2016.1200771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1 + myeloid cells. J Immunol 166:5398–5406

    Article  CAS  Google Scholar 

  14. Rice CM, Davies L, Subleski JJ, Maio N, Gonzalez Cotto M, Andrews C, Patel N, Palmieri EM, Lee J, Annunziata CM, Rouault TA, Durum SK, McVicar DW (2018) Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune inhibition. Nat Commun 9:5099

    Article  Google Scholar 

  15. Yan D, Yang Q, Shi M, Zhong L, Wu C, Meng T, Yin H, Zhou J (2013) Polyunsaturated fatty acids promote the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. Eur J Immunol 43:2943–2955. https://doi.org/10.1002/eji.201343472

    Article  CAS  PubMed  Google Scholar 

  16. Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K, Valle LD, Trillo-Tinoco J et al (2015) Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res 3:1236–1247. https://doi.org/10.1158/2326-6066.CIR-15-0036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77

    Article  CAS  Google Scholar 

  18. Yu J, Du W, Yan F, Wang Y, Li H, Cao S, Yu W, Shen C et al (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190:3783–3797. https://doi.org/10.4049/jimmunol.1201449

    Article  CAS  PubMed  Google Scholar 

  19. Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33:119–126. https://doi.org/10.1016/j.it.2011.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Galvan-Pena S, O’Neill LA (2014) Metabolic reprograming in macrophage polarization. Front Immunol 5:420. https://doi.org/10.3389/fimmu.2014.00420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173

    Article  CAS  Google Scholar 

  22. Davies LC, Rice CM, McVicar DW, Weiss JM (2019) Diversity and environmental adaptation of phagocytic cell metabolism. J Leukoc Biol 105:37–48. https://doi.org/10.1002/JLB.4RI0518-195R

    Article  CAS  PubMed  Google Scholar 

  23. Gautier EL, Ivanov S, Williams JW, Huang SC, Marcelin G, Fairfax K, Wang PL, Francis JS et al (2014) Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. J Exp Med 211:1525–1531. https://doi.org/10.1084/jem.20140570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosas M, Davies LC, Giles PJ, Liao CT, Kharfan B, Stone TC, O’Donnell VB, Fraser DJ et al (2014) The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science 344:645–648. https://doi.org/10.1126/science.1251414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davies LC, Rice CM, Palmieri EM, Taylor PR, Kuhns DB, McVicar DW (2017) Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels. Nat Commun 8:2074. https://doi.org/10.1038/s41467-017-02092-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563. https://doi.org/10.1038/nature13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Niu Z, Shi Q, Zhang W, Shu Y, Yang N, Chen B, Wang Q, Zhao X et al (2017) Caspase-1 cleaves PPARgamma for potentiating the pro-tumor action of TAMs. Nat Commun 8:766. https://doi.org/10.1038/s41467-017-00523-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mycielska ME, Dettmer K, Rummele P, Schmidt K, Prehn C, Milenkovic VM, Jagla W, Madej GM et al (2018) Extracellular citrate affects critical elements of cancer cell metabolism and supports cancer development in vivo. Cancer Res 78:2513–2523. https://doi.org/10.1158/0008-5472.CAN-17-2959

    Article  CAS  PubMed  Google Scholar 

  29. Weiss JM, Davies LC, Karwan M, Ileva L, Ozaki MK, Cheng RY, Ridnour LA, Annunziata CM et al (2018) Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J Clin Invest 128:3794–3805. https://doi.org/10.1172/JCI99169

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, Cervantes-Barragan L, Ma X et al (2016) Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 24:158–166. https://doi.org/10.1016/j.cmet.2016.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hall CJ, Boyle RH, Astin JW, Flores MV, Oehlers SH, Sanderson LE, Ellett F, Lieschke GJ et al (2013) Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating beta-oxidation-dependent mitochondrial ROS production. Cell Metab 18:265–278. https://doi.org/10.1016/j.cmet.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  32. Steiger MG, Blumhoff ML, Mattanovich D, Sauer M (2013) Biochemistry of microbial itaconic acid production. Front Microbiol 4:23. https://doi.org/10.3389/fmicb.2013.00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cordes T, Michelucci A, Hiller K (2015) Itaconic acid: the surprising role of an industrial compound as a mammalian antimicrobial metabolite. Annu Rev Nutr 35:451–473. https://doi.org/10.1146/annurev-nutr-071714-034243

    Article  CAS  PubMed  Google Scholar 

  34. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, Binz T, Wegner A et al (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci USA 110:7820–7825. https://doi.org/10.1073/pnas.1218599110

    Article  PubMed  Google Scholar 

  35. Strelko CL, Lu W, Dufort FJ, Seyfried TN, Chiles TC, Rabinowitz JD, Roberts MF (2011) Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc 133:16386–16389. https://doi.org/10.1021/ja2070889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cordes T, Wallace M, Michelucci A, Divakaruni AS, Sapcariu SC, Sousa C, Koseki H, Cabrales P et al (2016) Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J Biol Chem 291:14274–14284. https://doi.org/10.1074/jbc.M115.685792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Neill LAJ, Artyomov MN (2019) Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol 19:273–281. https://doi.org/10.1038/s41577-019-0128-5

    Article  CAS  PubMed  Google Scholar 

  38. Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, Jedrychowski MP, Costa ASH et al (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556:113–117. https://doi.org/10.1038/nature25986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T et al (2016) Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7:11624. https://doi.org/10.1038/ncomms11624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mills EL, Kelly B, Logan A, Costa AS, Varma M, Bryant CE, Tourlomousis P, Dabritz JH et al (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167(457–70):e13. https://doi.org/10.1016/j.cell.2016.08.064

    Article  CAS  Google Scholar 

  41. Ren K, Lv Y, Zhuo Y, Chen C, Shi H, Guo L, Yang G, Hou Y et al (2016) Suppression of IRG-1 reduces inflammatory cell infiltration and lung injury in respiratory syncytial virus infection by reducing production of reactive oxygen species. J Virol 90:7313–7322. https://doi.org/10.1128/JVI.00563-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pan J, Zhao X, Lin C, Xu H, Yin Z, Liu T, Zhang S (2014) Immune responsive gene 1, a novel oncogene, increases the growth and tumorigenicity of glioma. Oncol Rep 32:1957–1966. https://doi.org/10.3892/or.2014.3474

    Article  CAS  PubMed  Google Scholar 

  43. Weiss JM, Davies LC, Karwan M, Ileva L, Ozaki MK, Cheng RYS, Ridnour LA, Annunziata CM et al (2018) Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J Clin Invest 128:3794–3805

    Article  Google Scholar 

  44. Sasikaran J, Ziemski M, Zadora PK, Fleig A, Berg IA (2014) Bacterial itaconate degradation promotes pathogenicity. Nat Chem Biol 10:371–377. https://doi.org/10.1038/nchembio.1482

    Article  CAS  PubMed  Google Scholar 

  45. Wang SF, Adler J, Lardy HA (1961) The pathway of itaconate metabolism by liver mitochondria. J Biol Chem 236:26–30

    CAS  PubMed  Google Scholar 

  46. Nemeth B, Doczi J, Csete D, Kacso G, Ravasz D, Adams D, Kiss G, Nagy AM et al (2016) Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. FASEB J 30:286–300. https://doi.org/10.1096/fj.15-279398

    Article  CAS  PubMed  Google Scholar 

  47. Sakai A, Kusumoto A, Kiso Y, Furuya E (2004) Itaconate reduces visceral fat by inhibiting fructose 2,6-bisphosphate synthesis in rat liver. Nutrition 20:997–1002. https://doi.org/10.1016/j.nut.2004.08.007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, Cancer and Inflammation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Weiss.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is a Focussed Research Review based on a presentation given at the Sixth International Conference on Cancer Immunotherapy and Immunomonitoring (CITIM 2019), held in Tbilisi, Georgia, 29th April–2nd May 2019. It is part of a series of CITIM 2019 papers in Cancer Immunology, Immunotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, J.M. The promise and peril of targeting cell metabolism for cancer therapy. Cancer Immunol Immunother 69, 255–261 (2020). https://doi.org/10.1007/s00262-019-02432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02432-7

Keywords

Navigation