Skip to main content

Advertisement

Reduced CTL motility and activity in avascular tumor areas

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Patchy infiltration of tumors by cytotoxic T cells (CTLs) predicts poorer prognosis for cancer patients. The factors limiting intratumoral CTL dissemination, though, are poorly understood. To study CTL dissemination in tumors, we histologically examined human melanoma samples and used mice to image B16-OVA tumors infiltrated by OT-I CTLs using intravital two-photon microscopy. In patients, most CTLs concentrated around peripheral blood vessels, especially in poorly infiltrated tumors. In mice, OT-I CTLs had to cluster around tumor cells to efficiently kill them in a contact-and perforin-dependent manner and cytotoxicity was strictly antigen-specific. OT-I CTLs as well as non-specific CTLs concentrated around peripheral vessels, and cleared the tumor cells around them. This was also the case when CTLs were injected directly into the tumors. CTLs crawled rapidly only in areas within 50 µm of flowing blood vessels and transient occlusion of vessels immediately, though reversibly, stopped their migration. In vitro, oxygen depletion and blockade of oxidative phosphorylation also reduced CTL motility. Taken together, these results suggest that hypoxia limits CTL migration away from blood vessels, providing immune-privileged niches for tumor cells to survive. Normalizing intratumoral vasculature may thus synergize with tumor immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALP-red:

Alkaline phosphatase red

CFP:

Cyan fluorescent protein

DAB:

3,3′-Diaminobenzidine

DIC:

Differential interference contrast

FAS:

First apoptosis signal

FasL:

Fas ligand

FCCP:

Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone

HIF-1α:

Hypoxia inducible factor 1 α

IRES:

Internal ribosome entry site

References

  1. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  PubMed  Google Scholar 

  2. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14:135–146

    Article  CAS  PubMed  Google Scholar 

  3. Angell H, Galon J (2013) From the immune contexture to the immunoscore: the role of prognostic and predictive immune markers in cancer. Curr Opin Immunol 25:261–267

    Article  CAS  PubMed  Google Scholar 

  4. Aerts JG, Hegmans JP (2013) Tumor-specific cytotoxic T cells are crucial for efficacy of immunomodulatory antibodies in patients with lung cancer. Cancer Res 73:2381–2388

    Article  CAS  PubMed  Google Scholar 

  5. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Trambas CM, Griffiths GM (2003) Delivering the kiss of death. Nat Immunol 4:399–403

    Article  CAS  PubMed  Google Scholar 

  7. Berke G (1995) The CTL’s kiss of death. Cell 81:9–12

    Article  CAS  PubMed  Google Scholar 

  8. Voskoboinik I, Whisstock JC, Trapani JA (2015) Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 15:388–400

    Article  CAS  PubMed  Google Scholar 

  9. Zhang B, Karrison T, Rowley DA, Schreiber H (2008) IFN-gamma- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J Clin Investig 118:1398–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schietinger A, Arina A, Liu RB, Wells S, Huang J, Engels B et al (2013) Longitudinal confocal microscopy imaging of solid tumor destruction following adoptive T cell transfer. Oncoimmunology. 2:e26677

    Article  PubMed  PubMed Central  Google Scholar 

  11. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  CAS  PubMed  Google Scholar 

  12. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT et al (2012) Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res 72:1070–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kiss J, Timar J, Somlai B, Gilde K, Fejos Z, Gaudi I et al (2007) Association of microvessel density with infiltrating cells in human cutaneous malignant melanoma. Pathol Oncol Res 13:21–31

    Article  PubMed  Google Scholar 

  14. Brizel DM, Scully SP, Harrelson JM, Brizel M, Harrelson M, Layfleld J et al (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943

    CAS  PubMed  Google Scholar 

  15. Höckel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    PubMed  Google Scholar 

  16. Huang JH, Cardenas-Navia LI, Caldwell CC, Plumb TJ, Radu CG, Rocha PN et al (2007) Requirements for T lymphocyte migration in explanted lymph nodes. J Immunol 178:7747–7755

    Article  CAS  PubMed  Google Scholar 

  17. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R et al (2015) Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 7:1–12

    Article  CAS  Google Scholar 

  19. Mempel TR, Bauer CA (2009) Intravital imaging of CD8+ T cell function in cancer. Clin Exp Metastasis 26:311–327

    Article  PubMed  Google Scholar 

  20. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ et al (2014) Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for t cell immunity. Cancer Cell 26:638–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Breart B, Lemaitre F, Celli S, Bousso P (2008) Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Investig 118:1390–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204:345–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23:291–299

    CAS  PubMed  Google Scholar 

  24. Zangi L, Klionsky YZ, Yarimi L, Bachar-Lustig E, Eidelstein Y, Shezen E et al (2012) Deletion of cognate CD8 T cells by immature dendritic cells: a novel role for perforin, granzyme A, TREM-1, and TLR7. Blood 120:1647–1657

    Article  CAS  PubMed  Google Scholar 

  25. Crissman JD, Hatfield J, Schaldenbrand M, Sloane BF, Honn KV (1985) Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab Investig 53:470–478

    CAS  PubMed  Google Scholar 

  26. Steff AM, Fortin M, Arguin C, Hugo P (2001) Detection of a decrease in green fluorescent protein fluorescence for the monitoring of cell death: an assay amenable to high-throughput screening technologies. Cytometry 45:237–243

    Article  CAS  PubMed  Google Scholar 

  27. Heitjan DF, Manni A, Santen RJ (1993) Statistical analysis of in vivo tumor growth experiments. Cancer Res 53:6042–6050

    CAS  PubMed  Google Scholar 

  28. Perez OD, Mitchell D, Jager GC, Nolan GP (2004) LFA-1 signaling through p44/42 is coupled to perforin degranulation in CD56+ CD8+ natural killer cells. Blood 104:1083–1093

    Article  CAS  PubMed  Google Scholar 

  29. Dustin ML, Bromley SK, Kan ZY, Peterson DA, Unanue ER (1997) Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc Natl Acad Sci USA 94:3909–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caramalho I, Faroudi M, Padovan E, Muller S, Valitutti S, Müller S (2009) Visualizing CTL/melanoma cell interactions: multiple hits must be delivered for tumour cell annihilation. J Cell Mol Med 13:3834–3846

    Article  PubMed  Google Scholar 

  31. Böhm W, Thoma S, Leithäuser F, Möller P, Schirmbeck R, Reimann J (1998) T cell-mediated, IFN-gamma-facilitated rejection of murine B16 melanomas. J Immunol 161:897–908

    PubMed  Google Scholar 

  32. Khazen R, Puissegur M, Muller S, Valitutti S (2015) Dissecting early mechanisms of melanoma cell resistance to cytotoxic T lymphocyte attack (TUM10P.1025). J Immunol 194:211.6

    Google Scholar 

  33. Ivanov VN, Bhoumik A, Ronai Z (2003) Death receptors and melanoma resistance to apoptosis. Oncogene 22:3152–3161

    Article  CAS  PubMed  Google Scholar 

  34. Engelhardt JJ, Boldajipour B, Beemiller P, Pandurangi P, Sorensen C, Werb Z et al (2012) Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21:402–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pentcheva-Hoang T, Simpson TR, Montalvo-Ortiz W, Allison JP (2014) Cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade enhances anti-tumor immunity by stimulating melanoma-specific T cell motility. Cancer Immunol Res 4:970–980

    Article  CAS  Google Scholar 

  36. Halle S, Keyser KA, Stahl FR, Busche A, Marquardt A, Zheng X et al (2016) In vivo killing capacity of cytotoxic T cells is limited and involves dynamic interactions and T cell cooperativity. Immunity 44:233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clever D, Roychoudhuri R, Constantinides MG, Askenase MH, Sukumar M, Klebanoff CA et al (2016) Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell 166(1117–1131):e14

    Google Scholar 

  38. Vogel S, Wottawa M, Farhat K, Zieseniss A, Schnelle M, Le-Huu S et al (2010) Prolyl hydroxylase domain (PHD) 2 affects cell migration and F-actin formation via RhoA/Rho-associated kinase-dependent cofilin phosphorylation. J Biol Chem 285:33756–33763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo W, Lin B, Wang Y, Zhong J, O’Meally R, Cole RN et al (2014) PHD3-mediated prolyl hydroxylation of nonmuscle actin impairs polymerization and cell motility. Mol Biol Cell 25:2788–2796

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ho PC, Bihuniak JD, MacIntyre AN, Staron M, Liu X, Amezquita R et al (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162:1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hatfield SM, Kjaergaard J, Lukashev D, Belikoff B, Schreiber TH, Sethumadhavan S et al (2014) Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. J Mol Med (Berl) 92:1283–1292

    Article  CAS  Google Scholar 

  42. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M et al (2015) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:3812–3820

    Article  CAS  Google Scholar 

  43. Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A (2014) Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front Immunol 5:1–16

    Google Scholar 

  44. Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M et al (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24:695–709

    Article  CAS  PubMed  Google Scholar 

  45. Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van Den Bossche J et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739

    Article  CAS  PubMed  Google Scholar 

  46. Venetz D, Ponzoni M, Schiraldi M, Ferreri AJM, Bertoni F, Doglioni C et al (2010) Perivascular expression of CXCL9 and CXCL12 in primary central nervous system lymphoma: T-cell infiltration and positioning of malignant B cells. Int J Cancer 127:2300–2312

    Article  CAS  PubMed  Google Scholar 

  47. Hagemann IS, Lal P, Feldman MD, Benencia F (2014) Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 20:607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science (80-) 307:58–62

    Article  CAS  Google Scholar 

  49. Sorensen AG, Emblem KE, Polaskova P, Jennings D, Kim H, Ancukiewicz M et al (2012) Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res 72:402–407

    Article  CAS  PubMed  Google Scholar 

  50. Li X, Kostareli E, Suffner J, Garbi N, Hämmerling GJ (2010) Efficient Treg depletion induces T-cell infiltration and rejection of large tumors. Eur J Immunol 40:3325–3335

    Article  CAS  PubMed  Google Scholar 

  51. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24:589–602

    Article  CAS  PubMed  Google Scholar 

  52. Manning EA, Ullman JG, Leatherman JM, Asquith JM, Hansen TR, Armstrong TD et al (2007) A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin Cancer Res 13:3951–3959

    Article  CAS  PubMed  Google Scholar 

  53. Hamzah J, Jugold M, Kiessling F, Rigby P, Manzur M, Marti HH et al (2008) Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453:410–414

    Article  CAS  PubMed  Google Scholar 

  54. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J et al (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA 109:17561–17566

    Article  PubMed  PubMed Central  Google Scholar 

  55. Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M, Apasov SG et al (2001) Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 167:6140–6149

    Article  CAS  PubMed  Google Scholar 

  56. Nakagawa Y, Negishi Y, Shimizu M, Takahashi M, Ichikawa M, Takahashi H (2015) Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett 167:72–86

    Article  CAS  PubMed  Google Scholar 

  57. Gropper Y, Feferman T, Shalit T, Salame TM, Porat Z, Shakhar G (2017) Culturing CTLs under hypoxic conditions enhances their cytolysis and improves their anti-tumor function. Cell Rep 20:2547–2555

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Guy Shakhar and Tali Feferman were supported in this project by grants from the Israel Science Foundation (Grant 1735/15), the Israel Cancer Association (Grant no. 20170182), and from the German Cancer Research Center and the Israeli ministry of Science and Technology (DKFZ-MOST) (Grant no. GR2353) collaborative program.

Author information

Authors and Affiliations

Authors

Contributions

YM and TF performed the experiments and wrote the paper, AH and GS performed additional experiments, ZS assisted with analysis, and MK assisted with data visualization. CA and BS prepared clinical samples, IB and MJB provided these samples, and GS conceived and planned the project and helped writing the paper.

Corresponding authors

Correspondence to Tali Feferman or Guy Shakhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

Experiments were approved by the institutional animal care and use committee and the Institutional Review Board at the Weizmann Institute of Science. Protocol number 40351217-2. We followed the guidelines for animal use in research in Israel and for the use of specimens of human origin.

Informed consent

All patients signed a form consenting to the use of diagnostic samples taken from them for anonymous, non-commercial research purposes.

Animal source

C57BL/6 mice were purchased from Harlan laboratories Ltd. All other mouse strains were purchased from the Jackson Laboratories and bred locally.

Cell line authentication

Cells from the B16a melanoma line [25] were kindly provided by Prof. Bonnie Sloane at Wayne State University, Detroit, MI. Cells were periodically tested for the presence of mycoplasma and found clean. All lines were used within ten passages. Expression of OVA and fluorescent proteins after cell passages was confirmed by flow cytometry. All tumor lines grew rapidly in untreated immunocompetent syngeneic C57BL/6 mice and formed pigmented tumors typical of melanoma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manaster, Y., Shipony, Z., Hutzler, A. et al. Reduced CTL motility and activity in avascular tumor areas. Cancer Immunol Immunother 68, 1287–1301 (2019). https://doi.org/10.1007/s00262-019-02361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02361-5

Keywords