Advertisement

Personalized cancer vaccines: adjuvants are important, too

  • Cécile Gouttefangeas
  • Hans-Georg Rammensee
Focussed Research Review

Abstract

Therapeutic cancer vaccines have shown limited clinical efficacy so far. Nevertheless, in the meantime, our understanding of immune cell function and the interactions of immune cells with growing tumors has advanced considerably. We are now in a position to invest this knowledge into the design of more powerful vaccines and therapy combinations aimed at increasing immunogenicity and decreasing tumor-induced immunosuppression. This review focuses essentially on peptide-based human vaccines. We will discuss two aspects that are critical for increasing their intrinsic immunogenicity: the selection of the antigen(s) to be targeted, and the as yet unmet need for strong adjuvants.

Keywords

Cancer Vaccine Clinical trial Peptide Adjuvant CITIM2017 

Abbreviations

PAMP

Pathogen-associated molecular pattern

TSA

Tumor-specific antigen

Notes

Acknowledgements

We thank all patients and colleagues involved in the research projects and clinical studies discussed in this paper, and L. Yakes for proofreading.

Author contributions

CG and H.-GR wrote the paper.

Funding

H.-G. Rammensee holds an Advanced Grant from the European Research Council (Mutaediting; 339842).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval, ethical standards and informed consent

All studies mentioned were formally approved by the local ethics committee of the University of Tübingen, and informed consent obtained from all patients.

References

  1. 1.
    Butterfield LH (2015) Cancer vaccines. BMJ 350:h988.  https://doi.org/10.1136/bmj.h988 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rammensee HG, Weinschenk T, Gouttefangeas C, Stevanovic S (2002) Towards patient-specific tumor antigen selection for vaccination. Immunol Rev 188:164–176CrossRefPubMedGoogle Scholar
  3. 3.
    van der Burg SH, Kalos M, Gouttefangeas C, Janetzki S, Ottensmeier C, Welters MJ, Romero P, Britten CM, Hoos A (2011) Harmonization of immune biomarker assays for clinical studies. Sci Transl Med 3(108):108ps144.  https://doi.org/10.1126/scitranslmed.3002785 Google Scholar
  4. 4.
    Obeid J, Hu Y, Slingluff CL Jr (2015) Vaccines, adjuvants, and dendritic cell activators—current status and future challenges. Semin Oncol 42(4):549–561.  https://doi.org/10.1053/j.seminoncol.2015.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915.  https://doi.org/10.1038/nm1100 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Finn OJ (2014) Vaccines for cancer prevention: a practical and feasible approach to the cancer epidemic. Cancer Immunol Res 2(8):708–713.  https://doi.org/10.1158/2326-6066.CIR-14-0110 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14(2):135–146.  https://doi.org/10.1038/nrc3670 CrossRefPubMedGoogle Scholar
  8. 8.
    Aleksic M, Liddy N, Molloy PE, Pumphrey N, Vuidepot A, Chang KM, Jakobsen BK (2012) Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur J Immunol 42(12):3174–3179.  https://doi.org/10.1002/eji.201242606 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gotter J, Brors B, Hergenhahn M, Kyewski B (2004) Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 199(2):155–166.  https://doi.org/10.1084/jem.20031677 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Lowik MJ, Berends-van der Meer DM, Essahsah F, Stynenbosch LF, Vloon AP, Ramwadhdoebe TH, Piersma SJ, van der Hulst JM, Valentijn AR, Fathers LM, Drijfhout JW, Franken KL, Oostendorp J, Fleuren GJ, Melief CJ, van der Burg SH (2010) Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci USA 107(26):11895–11899.  https://doi.org/10.1073/pnas.1006500107 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72(10):2457–2467.  https://doi.org/10.1158/0008-5472.CAN-11-2612 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vigneron N, Stroobant V, Chapiro J, Ooms A, Degiovanni G, Morel S, van der Bruggen P, Boon T, Van den Eynde BJ (2004) An antigenic peptide produced by peptide splicing in the proteasome. Science 304(5670):587–590.  https://doi.org/10.1126/science.1095522 CrossRefPubMedGoogle Scholar
  13. 13.
    Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Buschenfelde KH, Beach D (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269(5228):1281–1284CrossRefPubMedGoogle Scholar
  14. 14.
    Fossum B, Olsen AC, Thorsby E, Gaudernack G (1995) CD8 + T cells from a patient with colon carcinoma, specific for a mutant p21-Ras-derived peptide (Gly13 → Asp), are cytotoxic towards a carcinoma cell line harbouring the same mutation. Cancer Immunol Immunother 40(3):165–172PubMedGoogle Scholar
  15. 15.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128.  https://doi.org/10.1126/science.aaa1348 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199.  https://doi.org/10.1056/NEJMoa1406498 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB, Shafi S, Murugaesu N, Mitter R, Akarca AU, Linares J, Marafioti T, Henry JY, Van Allen EM, Miao D, Schilling B, Schadendorf D, Garraway LA, Makarov V, Rizvi NA, Snyder A, Hellmann MD, Merghoub T, Wolchok JD, Shukla SA, Wu CJ, Peggs KS, Chan TA, Hadrup SR, Quezada SA, Swanton C (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469.  https://doi.org/10.1126/science.aaf1490 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer C, Zhou S, Goldberg RM, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA Jr (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413.  https://doi.org/10.1126/science.aan6733 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, Chen C, Olive O, Carter TA, Li S, Lieb DJ, Eisenhaure T, Gjini E, Stevens J, Lane WJ, Javeri I, Nellaiappan K, Salazar AM, Daley H, Seaman M, Buchbinder EI, Yoon CH, Harden M, Lennon N, Gabriel S, Rodig SJ, Barouch DH, Aster JC, Getz G, Wucherpfennig K, Neuberg D, Ritz J, Lander ES, Fritsch EF, Hacohen N, Wu CJ (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662):217–221.  https://doi.org/10.1038/nature22991 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, Bukur V, Tadmor AD, Luxemburger U, Schrors B, Omokoko T, Vormehr M, Albrecht C, Paruzynski A, Kuhn AN, Buck J, Heesch S, Schreeb KH, Muller F, Ortseifer I, Vogler I, Godehardt E, Attig S, Rae R, Breitkreuz A, Tolliver C, Suchan M, Martic G, Hohberger A, Sorn P, Diekmann J, Ciesla J, Waksmann O, Bruck AK, Witt M, Zillgen M, Rothermel A, Kasemann B, Langer D, Bolte S, Diken M, Kreiter S, Nemecek R, Gebhardt C, Grabbe S, Holler C, Utikal J, Huber C, Loquai C, Tureci O (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662):222–226.  https://doi.org/10.1038/nature23003 CrossRefPubMedGoogle Scholar
  21. 21.
    Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, Linette GP (2015) Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348(6236):803–808.  https://doi.org/10.1126/science.aaa3828 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Finn OJ, Rammensee HG (2017) Is it possible to develop cancer vaccines to neoantigens, what are the major challenges, and how can these be overcome? Neoantigens: nothing new in spite of the name. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a028829 PubMedGoogle Scholar
  23. 23.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558.  https://doi.org/10.1126/science.1235122 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J, Weinschenk T, Modrusan Z, Mellman I, Lill JR, Delamarre L (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576.  https://doi.org/10.1038/nature14001 CrossRefPubMedGoogle Scholar
  25. 25.
    Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74.  https://doi.org/10.1126/science.aaa4971 CrossRefPubMedGoogle Scholar
  26. 26.
    Laumont CM, Daouda T, Laverdure JP, Bonneil E, Caron-Lizotte O, Hardy MP, Granados DP, Durette C, Lemieux S, Thibault P, Perreault C (2016) Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat Commun 7:10238.  https://doi.org/10.1038/ncomms10238 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liepe J, Marino F, Sidney J, Jeko A, Bunting DE, Sette A, Kloetzel PM, Stumpf MP, Heck AJ, Mishto M (2016) A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354(6310):354–358.  https://doi.org/10.1126/science.aaf4384 CrossRefPubMedGoogle Scholar
  28. 28.
    Kowalewski DJ, Schuster H, Backert L, Berlin C, Kahn S, Kanz L, Salih HR, Rammensee HG, Stevanovic S, Stickel JS (2015) HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci USA 112(2):E166–E175.  https://doi.org/10.1073/pnas.1416389112 CrossRefPubMedGoogle Scholar
  29. 29.
    Schuster H, Peper JK, Bosmuller HC, Rohle K, Backert L, Bilich T, Ney B, Loffler MW, Kowalewski DJ, Trautwein N, Rabsteyn A, Engler T, Braun S, Haen SP, Walz JS, Schmid-Horch B, Brucker SY, Wallwiener D, Kohlbacher O, Fend F, Rammensee HG, Stevanovic S, Staebler A, Wagner P (2017) The immunopeptidomic landscape of ovarian carcinomas. Proc Natl Acad Sci USA 114(46):E9942–E9951.  https://doi.org/10.1073/pnas.1707658114 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, Kurek R, Loeser W, Bichler KH, Wernet D, Stevanovic S, Rammensee HG (2002) Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res 62(20):5818–5827PubMedGoogle Scholar
  31. 31.
    Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581.  https://doi.org/10.1038/nature13988 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Peper JK, Stevanovic S (2015) A combined approach of human leukocyte antigen ligandomics and immunogenicity analysis to improve peptide-based cancer immunotherapy. Cancer Immunol Immunother 64(10):1295–1303.  https://doi.org/10.1007/s00262-015-1682-8 CrossRefPubMedGoogle Scholar
  33. 33.
    Rammensee HG, Singh-Jasuja H (2013) HLA ligandome tumor antigen discovery for personalized vaccine approach. Expert Rev Vaccines 12(10):1211–1217.  https://doi.org/10.1586/14760584.2013.836911 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Loffler MW, Chandran PA, Laske K, Schroeder C, Bonzheim I, Walzer M, Hilke FJ, Trautwein N, Kowalewski DJ, Schuster H, Gunder M, Carcamo Yanez VA, Mohr C, Sturm M, Nguyen HP, Riess O, Bauer P, Nahnsen S, Nadalin S, Zieker D, Glatzle J, Thiel K, Schneiderhan-Marra N, Clasen S, Bosmuller H, Fend F, Kohlbacher O, Gouttefangeas C, Stevanovic S, Konigsrainer A, Rammensee HG (2016) Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient. J Hepatol 65(4):849–855.  https://doi.org/10.1016/j.jhep.2016.06.027 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Reed SG, Orr MT, Fox CB (2013) Key roles of adjuvants in modern vaccines. Nat Med 19(12):1597–1608.  https://doi.org/10.1038/nm.3409 CrossRefPubMedGoogle Scholar
  36. 36.
    De Gregorio E, Caproni E, Ulmer JB (2013) Vaccine adjuvants: mode of action. Front Immunol 4:214.  https://doi.org/10.3389/fimmu.2013.00214 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    van Doorn E, Liu H, Huckriede A, Hak E (2016) Safety and tolerability evaluation of the use of Montanide ISA51 as vaccine adjuvant: a systematic review. Hum Vaccin Immunother 12(1):159–169.  https://doi.org/10.1080/21645515.2015.1071455 CrossRefPubMedGoogle Scholar
  38. 38.
    Graham BS, McElrath MJ, Keefer MC, Rybczyk K, Berger D, Weinhold KJ, Ottinger J, Ferarri G, Montefiori DC, Stablein D, Smith C, Ginsberg R, Eldridge J, Duerr A, Fast P, Haynes BF (2010) Immunization with cocktail of HIV-derived peptides in montanide ISA-51 is immunogenic, but causes sterile abscesses and unacceptable reactogenicity. PLoS One 5(8):e11995.  https://doi.org/10.1371/journal.pone.0011995 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Feyerabend S, Stevanovic S, Gouttefangeas C, Wernet D, Hennenlotter J, Bedke J, Dietz K, Pascolo S, Kuczyk M, Rammensee HG, Stenzl A (2009) Novel multi-peptide vaccination in Hla-A2 + hormone sensitive patients with biochemical relapse of prostate cancer. Prostate 69(9):917–927.  https://doi.org/10.1002/pros.20941 CrossRefPubMedGoogle Scholar
  40. 40.
    Rausch S, Gouttefangeas C, Hennenlotter J, Laske K, Walter K, Feyerabend S, Chandran PA, Kruck S, Singh-Jasuja H, Frick A, Kroger N, Stevanovic S, Stenzl A, Rammensee HG, Bedke J (2017) Results of a phase 1/2 study in metastatic renal cell carcinoma patients treated with a patient-specific adjuvant multi-peptide vaccine after resection of metastases. Eur Urol Focus.  https://doi.org/10.1016/j.euf.2017.09.009 PubMedGoogle Scholar
  41. 41.
    Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W, Liu C, Lou Y, Wang Z, Ma W, Rabinovich B, Sowell RT, Schluns KS, Davis RE, Hwu P, Overwijk WW (2013) Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med 19(4):465–472.  https://doi.org/10.1038/nm.3105 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Harris RC, Chianese-Bullock KA, Petroni GR, Schaefer JT, Brill LB 2nd, Molhoek KR, Deacon DH, Patterson JW, Slingluff CL Jr (2012) The vaccine-site microenvironment induced by injection of incomplete Freund’s adjuvant, with or without melanoma peptides. J Immunother 35(1):78–88.  https://doi.org/10.1097/CJI.0b013e31823731a4 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Salerno EP, Shea SM, Olson WC, Petroni GR, Smolkin ME, McSkimming C, Chianese-Bullock KA, Slingluff CL Jr (2013) Activation, dysfunction and retention of T cells in vaccine sites after injection of incomplete Freund’s adjuvant, with or without peptide. Cancer Immunol Immunother 62(7):1149–1159.  https://doi.org/10.1007/s00262-013-1435-5 CrossRefPubMedGoogle Scholar
  44. 44.
    Hoeller C, Michielin O, Ascierto PA, Szabo Z, Blank CU (2016) Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma. Cancer Immunol Immunother 65(9):1015–1034.  https://doi.org/10.1007/s00262-016-1860-3 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, Hilf N, Schoor O, Fritsche J, Mahr A, Maurer D, Vass V, Trautwein C, Lewandrowski P, Flohr C, Pohla H, Stanczak JJ, Bronte V, Mandruzzato S, Biedermann T, Pawelec G, Derhovanessian E, Yamagishi H, Miki T, Hongo F, Takaha N, Hirakawa K, Tanaka H, Stevanovic S, Frisch J, Mayer-Mokler A, Kirner A, Rammensee HG, Reinhardt C, Singh-Jasuja H (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18(8):1254–1261.  https://doi.org/10.1038/nm.2883 CrossRefPubMedGoogle Scholar
  46. 46.
    Weber J, Sondak VK, Scotland R, Phillip R, Wang F, Rubio V, Stuge TB, Groshen SG, Gee C, Jeffery GG, Sian S, Lee PP (2003) Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer 97(1):186–200.  https://doi.org/10.1002/cncr.11045 CrossRefPubMedGoogle Scholar
  47. 47.
    Slingluff CL Jr, Petroni GR, Olson WC, Smolkin ME, Ross MI, Haas NB, Grosh WW, Boisvert ME, Kirkwood JM, Chianese-Bullock KA (2009) Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8 + and CD4 + T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin Cancer Res 15(22):7036–7044.  https://doi.org/10.1158/1078-0432.CCR-09-1544 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L (2007) Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol 18(2):226–232.  https://doi.org/10.1093/annonc/mdl158 CrossRefPubMedGoogle Scholar
  49. 49.
    Steinhagen F, Kinjo T, Bode C, Klinman DM (2011) TLR-based immune adjuvants. Vaccine 29(17):3341–3355.  https://doi.org/10.1016/j.vaccine.2010.08.002 CrossRefPubMedGoogle Scholar
  50. 50.
    Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, Krieg AM, Cerottini JC, Romero P (2005) Rapid and strong human CD8 + T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Investig 115(3):739–746.  https://doi.org/10.1172/JCI23373 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Baumgaertner P, Costa Nunes C, Cachot A, Maby-El Hajjami H, Cagnon L, Braun M, Derre L, Rivals JP, Rimoldi D, Gnjatic S, Abed Maillard S, Marcos Mondejar P, Protti MP, Romano E, Michielin O, Romero P, Speiser DE, Jandus C (2016) Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8(+) and CD4(+) T-cell responses with multiple specificities including a novel DR7-restricted epitope. Oncoimmunology 5(10):e1216290.  https://doi.org/10.1080/2162402X.2016.1216290 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fehres CM, Bruijns SC, van Beelen AJ, Kalay H, Ambrosini M, Hooijberg E, Unger WW, de Gruijl TD, van Kooyk Y (2014) Topical rather than intradermal application of the TLR7 ligand imiquimod leads to human dermal dendritic cell maturation and CD8 + T-cell cross-priming. Eur J Immunol 44(8):2415–2424.  https://doi.org/10.1002/eji.201344094 CrossRefPubMedGoogle Scholar
  53. 53.
    Iversen TZ, Engell-Noerregaard L, Ellebaek E, Andersen R, Larsen SK, Bjoern J, Zeyher C, Gouttefangeas C, Thomsen BM, Holm B, Thor Straten P, Mellemgaard A, Andersen MH, Svane IM (2014) Long-lasting disease stabilization in the absence of toxicity in metastatic lung cancer patients vaccinated with an epitope derived from indoleamine 2,3 dioxygenase. Clin Cancer Res 20(1):221–232.  https://doi.org/10.1158/1078-0432.CCR-13-1560 CrossRefPubMedGoogle Scholar
  54. 54.
    van Poelgeest MI, Welters MJ, Vermeij R, Stynenbosch LF, Loof NM, Berends-van der Meer DM, Lowik MJ, Hamming IL, van Esch EM, Hellebrekers BW, van Beurden M, Schreuder HW, Kagie MJ, Trimbos JB, Fathers LM, Daemen T, Hollema H, Valentijn AR, Oostendorp J, Oude Elberink JH, Fleuren GJ, Bosse T, Kenter GG, Stijnen T, Nijman HW, Melief CJ, van der Burg SH (2016) Vaccination against oncoproteins of HPV16 for noninvasive vulvar/vaginal lesions: lesion clearance is related to the strength of the T-cell response. Clin Cancer Res 22(10):2342–2350.  https://doi.org/10.1158/1078-0432.CCR-15-2594 CrossRefPubMedGoogle Scholar
  55. 55.
    Okada H, Butterfield LH, Hamilton RL, Hoji A, Sakaki M, Ahn BJ, Kohanbash G, Drappatz J, Engh J, Amankulor N, Lively MO, Chan MD, Salazar AM, Shaw EG, Potter DM, Lieberman FS (2015) Induction of robust type-I CD8 + T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin Cancer Res 21(2):286–294.  https://doi.org/10.1158/1078-0432.CCR-14-1790 CrossRefPubMedGoogle Scholar
  56. 56.
    Sabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C, Tuballes K, Jungbluth AA, Ritter G, Aghajanian C, Bell-McGuinn K, Hensley ML, Konner J, Tew W, Spriggs DR, Hoffman EW, Venhaus R, Pan L, Salazar AM, Diefenbach CM, Old LJ, Gnjatic S (2012) Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res 18(23):6497–6508.  https://doi.org/10.1158/1078-0432.CCR-12-2189 CrossRefPubMedGoogle Scholar
  57. 57.
    Oosterhoff D, Heusinkveld M, Lougheed SM, Kosten I, Lindstedt M, Bruijns SC, van Es T, van Kooyk Y, van der Burg SH, de Gruijl TD (2013) Intradermal delivery of TLR agonists in a human explant skin model: preferential activation of migratory dendritic cells by polyribosinic–polyribocytidylic acid and peptidoglycans. J Immunol 190(7):3338–3345.  https://doi.org/10.4049/jimmunol.1200598 CrossRefPubMedGoogle Scholar
  58. 58.
    Deres K, Schild H, Wiesmuller KH, Jung G, Rammensee HG (1989) In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature 342(6249):561–564.  https://doi.org/10.1038/342561a0 CrossRefPubMedGoogle Scholar
  59. 59.
    Gutjahr A, Papagno L, Nicoli F, Lamoureux A, Vernejoul F, Lioux T, Gostick E, Price DA, Tiraby G, Perouzel E, Appay V, Verrier B, Paul S (2017) Cutting edge: a dual TLR2 and TLR7 ligand induces highly potent humoral and cell-mediated immune responses. J Immunol 198(11):4205–4209.  https://doi.org/10.4049/jimmunol.1602131 CrossRefPubMedGoogle Scholar
  60. 60.
    Ahonen CL, Doxsee CL, McGurran SM, Riter TR, Wade WF, Barth RJ, Vasilakos JP, Noelle RJ, Kedl RM (2004) Combined TLR and CD40 triggering induces potent CD8 + T cell expansion with variable dependence on type I IFN. J Exp Med 199(6):775–784.  https://doi.org/10.1084/jem.20031591 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cho HI, Celis E (2009) Optimized peptide vaccines eliciting extensive CD8 T-cell responses with therapeutic antitumor effects. Cancer Res 69(23):9012–9019.  https://doi.org/10.1158/0008-5472.CAN-09-2019 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Immunology, Interfaculty Institute for Cell BiologyEberhard Karls University and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site TübingenTübingenGermany

Personalised recommendations