Skip to main content

Advertisement

Log in

Rational combinations of in vivo cancer antigen priming and adoptive T-cell therapy mobilize immune and clinical responses in terminal cancers

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

It is now recognized that solid tumors encroach on the host’s immune microenvironment to favor its own proliferation. Strategies to enhance the specificity of the endogenous T-cell population against tumors have been met with limited clinical success. We aimed to devise a two-tier protocol coupling in vivo whole antigen priming with ex vivo cellular expansion to clinically evaluate survival in patients following re-infusion of primed, autologous T cells, thereby determining treatment efficacy.

Experimental design

Treatment commenced with the acquisition of whole tumor antigens from tumor cell lines corresponding with patients’ primary malignancy. Lysate mixture was inoculated intradermally, while peripheral blood mononuclear cells (PBMCs) were periodically extracted via phlebotomy and expanded in culture ex vivo for re-infusion. Post-treatment tumor-specific T-cell response and cytotoxicity was confirmed via Elispot and real-time cell analyzing (RTCA) assay. Serum cytokine levels and cytotoxicity scores were evaluated for associations with survival status and duration.

Results

There was a significant increase in cytotoxicity exhibited by T cells measured using both Elispot and RTCA following treatment. Correlation analysis determined significant association between higher post-treatment cytotoxicity scores and survival status (R = 0.52, p = 0.0028) as well as longer survival duration in months (R = 0.59, p = 0.005).

Conclusions

Our treatment protocol successfully demonstrated significant correlation between tumor-associated antigen-specific immune response and objective prolongation of survival. Whole-cell cancer antigen priming and adoptive T-cell therapy is, therefore, a highly feasible clinical model which can be easily replicated to positively influence outcome in end-stage malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AIDS:

Acquired immune deficiency syndrome

CI:

Cell index

CTL:

Cytotoxic T cell

DCs:

Dendritic cells

FBS:

Fetal bovine serum

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

IL:

Interleukin

IQR:

Interquartile range

NSCLC:

Non-small cell lung carcinoma

PBMCs:

Blood mononuclear cells

RPMI:

Roswell Park Memorial Institute

RTCA:

Real-time cell analysis

TGF:

Transforming growth factor

Treg :

Regulatory T cell

TIFN−r :

Interferon γ T cell

References

  1. Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE (2012) The three main stumbling blocks for anticancer T cells. Trends Immunol 33(7):364–372. https://doi.org/10.1016/j.it.2012.02.006

    Article  PubMed  CAS  Google Scholar 

  2. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  PubMed  CAS  Google Scholar 

  3. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. https://doi.org/10.1056/NEJMoa1113205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol 27:16–25. https://doi.org/10.1016/j.coi.2014.01.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570. https://doi.org/10.1126/science.1203486

    Article  PubMed  CAS  Google Scholar 

  6. Chiang CL, Coukos G, Kandalaft LE (2015) Whole tumor antigen vaccines: where are we? Vaccines (Basel) 3(2):344–372. https://doi.org/10.3390/vaccines3020344

    Article  CAS  Google Scholar 

  7. Sabado RL, Meseck M, Bhardwaj N (2016) Dendritic cell vaccines. Methods Mol Biol 1403:763–777. https://doi.org/10.1007/978-1-4939-3387-7_44

    Article  PubMed  Google Scholar 

  8. Drake CG, Lipson EJ, Brahmer JR (2014) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11(1):24–37. https://doi.org/10.1038/nrclinonc.2013.208

    Article  PubMed  CAS  Google Scholar 

  9. Hsueh EC, Essner R, Foshag LJ, Ollila DW, Gammon G, O’Day SJ, Boasberg PD, Stern SL, Ye X, Morton DL (2002) Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J Clin Oncol 20(23):4549–4554. https://doi.org/10.1200/JCO.2002.01.151

    Article  PubMed  CAS  Google Scholar 

  10. Trzaskowska-Komon E, Wasiak M, Rolinski J, Klatka J (2016) Dendritic cells generated from peripheral blood monocytes (Mo-DCs) and stimulated with laryngeal cancer cell lysates are not good enough in stimulating anti-tumor immunity. Oral Oncol 55:e2–e3. https://doi.org/10.1016/j.oraloncology.2016.02.007

    Article  PubMed  CAS  Google Scholar 

  11. Rosenberg SA (2011) Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nat Rev Clin Oncol 8(10):577–585. https://doi.org/10.1038/nrclinonc.2011.116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Dang Y, Knutson KL, Goodell V, dela Rosa C, Salazar LG, Higgins D, Childs J, Disis ML (2007) Tumor antigen-specific T-cell expansion is greatly facilitated by in vivo priming. Clin Cancer Res 13(6):1883–1891. https://doi.org/10.1158/1078-0432.CCR-06-2083

    Article  PubMed  CAS  Google Scholar 

  13. Kho D, MacDonald C, Johnson R, Unsworth CP, O’Carroll SJ, du Mez E, Angel CE, Graham ES (2015) Application of xCELLigence RTCA biosensor technology for revealing the profile and window of drug responsiveness in real time. Biosensors (Basel) 5(2):199–222. https://doi.org/10.3390/bios5020199

    Article  CAS  Google Scholar 

  14. Weber J, Sondak VK, Scotland R, Phillip R, Wang F, Rubio V, Stuge TB, Groshen SG, Gee C, Jeffery GG, Sian S, Lee PP (2003) Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected stage II melanoma. Cancer 97(1):186–200. https://doi.org/10.1002/cncr.11045

    Article  PubMed  CAS  Google Scholar 

  15. Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M, Lee PP (2003) Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 9(11):1377–1382. https://doi.org/10.1038/nm942

    Article  PubMed  CAS  Google Scholar 

  16. Letsch A, Keilholz U, Kern F, Asemissen AM, Thiel E, Scheibenbogen C (2006) Specific central memory T cells in the bone marrow of patients immunized against tyrosinase peptides. J Immunother 29(2):201–207. https://doi.org/10.1097/01.cji.0000180903.73965.72

    Article  PubMed  CAS  Google Scholar 

  17. Slingluff CL Jr, Petroni GR, Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Hibbitts S, Teates D, Neese PY, Grosh WW, Chianese-Bullock KA, Woodson EM, Wiernasz CJ, Merrill P, Gibson J, Ross M, Engelhard VH (2003) Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 21(21):4016–4026. https://doi.org/10.1200/JCO.2003.10.005

    Article  PubMed  CAS  Google Scholar 

  18. Peoples GE, Gurney JM, Hueman MT, Woll MM, Ryan GB, Storrer CE, Fisher C, Shriver CD, Ioannides CG, Ponniah S (2005) Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients. J Clin Oncol 23(30):7536–7545. https://doi.org/10.1200/JCO.2005.03.047

    Article  PubMed  CAS  Google Scholar 

  19. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2):48–61. https://doi.org/10.1016/j.cell.2014.12.033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74. https://doi.org/10.1126/science.aaa4971

    Article  PubMed  CAS  Google Scholar 

  21. Oh J, Barve M, Matthews CM, Koon EC, Heffernan TP, Fine B, Grosen E, Bergman MK, Fleming EL, DeMars LR, West L, Spitz DL, Goodman H, Hancock KC, Wallraven G, Kumar P, Bognar E, Manning L, Pappen BO, Adams N, Senzer N, Nemunaitis J (2016) Phase II study of vigil(R) DNA engineered immunotherapy as maintenance in advanced stage ovarian cancer. Gynecol Oncol 143(3):504–510. https://doi.org/10.1016/j.ygyno.2016.09.018

    Article  PubMed  CAS  Google Scholar 

  22. Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, Li G (2008) Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 16(4):782–790. https://doi.org/10.1038/mt.2008.1

    Article  PubMed  CAS  Google Scholar 

  23. Baldwin SL, Bertholet S, Kahn M, Zharkikh I, Ireton GC, Vedvick TS, Reed SG, Coler RN (2009) Intradermal immunization improves protective efficacy of a novel TB vaccine candidate. Vaccine 27(23):3063–3071. https://doi.org/10.1016/j.vaccine.2009.03.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. WHO Publication (2010) Hepatitis B vaccines: WHO position paper—recommendations. Vaccine 28 (3):589–590. https://doi.org/10.1016/j.vaccine.2009.10.110

    Article  Google Scholar 

  25. Wu X, Franka R, Svoboda P, Pohl J, Rupprecht CE (2009) Development of combined vaccines for rabies and immunocontraception. Vaccine 27(51):7202–7209. https://doi.org/10.1016/j.vaccine.2009.09.025

    Article  PubMed  CAS  Google Scholar 

  26. Chiang CL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, Montone K, Mantia-Smaldone GM, Smith L, Nisenbaum HL, Levine BL, Kalos M, Czerniecki BJ, Torigian DA, Powell DJ Jr, Mick R, Coukos G (2013) A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res 19(17):4801–4815. https://doi.org/10.1158/1078-0432.CCR-13-1185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chiang CL, Ledermann JA, Aitkens E, Benjamin E, Katz DR, Chain BM (2008) Oxidation of ovarian epithelial cancer cells by hypochlorous acid enhances immunogenicity and stimulates T cells that recognize autologous primary tumor. Clin Cancer Res 14(15):4898–4907. https://doi.org/10.1158/1078-0432.CCR-07-4899

    Article  PubMed  CAS  Google Scholar 

  28. Chiang CL, Ledermann JA, Rad AN, Katz DR, Chain BM (2006) Hypochlorous acid enhances immunogenicity and uptake of allogeneic ovarian tumor cells by dendritic cells to cross-prime tumor-specific T cells. Cancer Immunol Immunother 55(11):1384–1395. https://doi.org/10.1007/s00262-006-0127-9

    Article  PubMed  Google Scholar 

  29. Dudley ME, Rosenberg SA (2003) Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 3(9):666–675. https://doi.org/10.1038/nrc1167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23(10):2346–2357. https://doi.org/10.1200/JCO.2005.00.240

    Article  PubMed  CAS  Google Scholar 

  31. Mesel-Lemoine M, Cherai M, Le Gouvello S, Guillot M, Leclercq V, Klatzmann D, Thomas-Vaslin V, Lemoine FM (2006) Initial depletion of regulatory T cells: the missing solution to preserve the immune functions of T lymphocytes designed for cell therapy. Blood 107(1):381–388. https://doi.org/10.1182/blood-2005-07-2658

    Article  PubMed  CAS  Google Scholar 

  32. Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+ CD25 T cells. J Clin Invest 112(9):1437–1443. https://doi.org/10.1172/JCI19441

    Article  PubMed  CAS  Google Scholar 

  33. Yee C, Lizee GA (2017) Personalized therapy: tumor antigen discovery for adoptive cellular therapy. Cancer J 23(2):144–148. https://doi.org/10.1097/PPO.0000000000000255

    Article  PubMed  CAS  Google Scholar 

  34. van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJ (2016) Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 16(4):219–233. https://doi.org/10.1038/nrc.2016.16

    Article  PubMed  CAS  Google Scholar 

  35. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G (2013) Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39(1):74–88. https://doi.org/10.1016/j.immuni.2013.06.014

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by research grants from Xiamen Key Laboratory for Clinical Translation of Cancer Theranostics.

Author information

Authors and Affiliations

Authors

Contributions

Qing Zhao Ruan: study design, data analysis, and drafting and revision of manuscript. Jian Qian Fu: study conduction and data collection. Xiao Xuan Wu: study conduction and data collection. Li Ping Huang: study conduction and data collection. Run Sheng Ruan: study design, study conduction, data collection, and drafting and revision of manuscript.

Corresponding author

Correspondence to Run Sheng Ruan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The trial was registered to the World Health Organization International Clinical Trials Registry Platform (ChiCTR-OPC-15006703) and was approved by the Xiamen 5th Hospital and Zhang Zhou Xing Pu Hospital Ethics Committee (Project 03/200909).

Informed consent

Written informed consent from study subjects was obtained in accordance with the Declaration of Helsinki. All study subjects were capable of giving informed consent. The participating patients signed printed consent forms after the trial procedure was explained. Care was taken to have patient repeat the procedure in his/ her own words. The attending clinician signed on the consent form after the patient as the responsible physician in this trial. A separate clinician acted as witness and countersigned the document to officially complete it for filing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3899 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, Q.Z., Fu, J.Q., Wu, X.X. et al. Rational combinations of in vivo cancer antigen priming and adoptive T-cell therapy mobilize immune and clinical responses in terminal cancers. Cancer Immunol Immunother 67, 907–915 (2018). https://doi.org/10.1007/s00262-018-2142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2142-z

Keywords

Navigation