Skip to main content

Advertisement

Log in

Epstein–Barr virus strain heterogeneity impairs human T-cell immunity

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The Epstein–Barr virus (EBV) establishes lifelong infections in > 90% of the human population. Although contained as asymptomatic infection by the immune system in most individuals, EBV is associated with the pathogenesis of approximately 1.5% of all cancers in humans. Some of these EBV-associated tumors have been successfully treated by the infusion of virus-specific T-cell lines. Recent sequence analyses of a large number of viral isolates suggested that distinct EBV strains have evolved in different parts of the world. Here, we assessed the impact of such sequence variations on EBV-specific T-cell immunity. With the exceptions of EBNA2 and the EBNA3 family of proteins, an overall low protein sequence disparity of about 1% was noted between Asian viral isolates, including the newly characterized M81 strain, and the prototypic EBV type 1 and type 2 strains. However, when T-cell epitopes including their flanking regions were compared, a substantial proportion was found to be polymorphic in different EBV strains. Importantly, CD4+ and CD8+ T-cell clones specific for viral epitopes from one strain often showed diminished recognition of the corresponding epitopes in other strains. In addition, T-cell recognition of a conserved epitope was affected by amino acid exchanges within the epitope flanking region. Moreover, the CD8+ T-cell response against polymorphic epitopes varied between donors and often ignored antigen variants. These results demonstrate that viral strain heterogeneity may impair antiviral T-cell immunity and suggest that immunotherapeutic approaches against EBV should preferably target broad sets of conserved epitopes including their flanking regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EBNA:

Epstein–Barr virus nuclear antigen

EBV:

Epstein–Barr virus

GA:

Glycine–alanine

His6 :

Hexahistidine tag

IFN-γ:

Interferon-gamma

LCL:

Lymphoblastoid B-cell line

LMP:

Latent membrane protein

NPC:

Nasopharyngeal carcinoma

PTLD:

Post-transplant lymphoproliferative disease

References

  1. Longnecker RM, Kieff E, Cohen JI (2013) Epstein–Barr virus. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 1898–1959

    Google Scholar 

  2. Rickinson AB, Kieff E (2007) Epstein–Barr Virus. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2575–2627

    Google Scholar 

  3. Young LS, Rickinson AB (2004) Epstein–Barr virus: 40 years on. Nat Rev Cancer 4(10):757–768

    Article  CAS  PubMed  Google Scholar 

  4. Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K (2009) The extent of genetic diversity of Epstein–Barr virus and its geographic and disease patterns: a need for reappraisal. Virus Res 143(2):209–221. https://doi.org/10.1016/j.virusres.2009.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsai MH, Raykova A, Klinke O, Bernhardt K, Gartner K, Leung CS, Geletneky K, Sertel S, Munz C, Feederle R, Delecluse HJ (2013) Spontaneous lytic replication and epitheliotropism define an Epstein–Barr virus strain found in carcinomas. Cell Rep 5(2):458–470. https://doi.org/10.1016/j.celrep.2013.09.012

    Article  CAS  PubMed  Google Scholar 

  6. Feederle R, Klinke O, Kutikhin A, Poirey R, Tsai MH, Delecluse HJ (2015) Epstein–Barr virus: from the detection of sequence polymorphisms to the recognition of viral types. Curr Top Microbiol Immunol 390(Pt 1):119–148. https://doi.org/10.1007/978-3-319-22822-8_7

    CAS  PubMed  Google Scholar 

  7. Farrell PJ (2015) Epstein–Barr virus strain variation. Curr Top Microbiol Immunol 390(Pt 1):45–69. https://doi.org/10.1007/978-3-319-22822-8_4

    CAS  PubMed  Google Scholar 

  8. Palser AL, Grayson NE, White RE, Corton C, Correia S, Ba Abdullah MM, Watson SJ, Cotten M, Arrand JR, Murray PG, Allday MJ, Rickinson AB, Young LS, Farrell PJ, Kellam P (2015) Genome diversity of Epstein–Barr virus from multiple tumor types and normal infection. J Virol 89(10):5222–5237. https://doi.org/10.1128/JVI.03614-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor GS, Long HM, Brooks JM, Rickinson AB, Hislop AD (2015) The immunology of Epstein–Barr virus-induced disease. Annu Rev Immunol 33:787–821. https://doi.org/10.1146/annurev-immunol-032414-112326

    Article  CAS  PubMed  Google Scholar 

  10. Long HM, Taylor GS, Rickinson AB (2011) Immune defence against EBV and EBV-associated disease. Curr Opin Immunol 23(2):258–264. https://doi.org/10.1016/j.coi.2010.12.014

    Article  CAS  PubMed  Google Scholar 

  11. Gottschalk S, Rooney CM (2015) Adoptive T-cell immunotherapy. Curr Top Microbiol Immunol 391:427–454. https://doi.org/10.1007/978-3-319-22834-1_15

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Merlo A, Turrini R, Dolcetti R, Zanovello P, Rosato A (2011) Immunotherapy for EBV-associated malignancies. Int J Hematol 93(3):281–293. https://doi.org/10.1007/s12185-011-0782-2

    Article  PubMed  Google Scholar 

  13. Bollard CM, Gottschalk S, Torrano V, Diouf O, Ku S, Hazrat Y, Carrum G, Ramos C, Fayad L, Shpall EJ, Pro B, Liu H, Wu MF, Lee D, Sheehan AM, Zu Y, Gee AP, Brenner MK, Heslop HE, Rooney CM (2014) Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein–Barr virus latent membrane proteins. J Clin Oncol 32(8):798–808. https://doi.org/10.1200/JCO.2013.51.5304

    Article  CAS  PubMed  Google Scholar 

  14. Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, Srivastava DK, Bowman LC, Krance RA, Brenner MK, Heslop HE (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92(5):1549–1555

    CAS  PubMed  Google Scholar 

  15. McAulay KA, Haque T, Urquhart G, Bellamy C, Guiretti D, Crawford DH (2009) Epitope specificity and clonality of EBV-specific CTLs used to treat posttransplant lymphoproliferative disease. J Immunol 182(6):3892–3901. https://doi.org/10.4049/jimmunol.0803572

    Article  CAS  PubMed  Google Scholar 

  16. Adhikary D, Behrends U, Boerschmann H, Pfunder A, Burdach S, Moosmann A, Witter K, Bornkamm GW, Mautner J (2007) Immunodominance of lytic cycle antigens in Epstein–Barr virus-specific CD4+ T cell preparations for therapy. PLoS One 2:e583. https://doi.org/10.1371/journal.pone.0000583

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moosmann A, Bigalke I, Tischer J, Schirrmann L, Kasten J, Tippmer S, Leeping M, Prevalsek D, Jaeger G, Ledderose G, Mautner J, Hammerschmidt W, Schendel DJ, Kolb HJ (2010) Effective and long-term control of EBV PTLD after transfer of peptide-selected T cells. Blood 115(14):2960–2970. https://doi.org/10.1182/blood-2009-08-236356

    Article  CAS  PubMed  Google Scholar 

  18. Icheva V, Kayser S, Wolff D, Tuve S, Kyzirakos C, Bethge W, Greil J, Albert MH, Schwinger W, Nathrath M, Schumm M, Stevanovic S, Handgretinger R, Lang P, Feuchtinger T (2013) Adoptive transfer of Epstein–Barr virus (EBV) nuclear antigen 1-specific t cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J Clin Oncol 31(1):39–48. https://doi.org/10.1200/JCO.2011.39.8495

    Article  CAS  PubMed  Google Scholar 

  19. Hislop AD, Taylor GS, Sauce D, Rickinson AB (2007) Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. Annu Rev Immunol 25:587–617. https://doi.org/10.1146/annurev.immunol.25.022106.141553

    Article  CAS  PubMed  Google Scholar 

  20. Taylor GS, Long HM, Haigh TA, Larsen M, Brooks J, Rickinson AB (2006) A role for intercellular antigen transfer in the recognition of EBV-transformed B cell lines by EBV nuclear antigen-specific CD4+ T cells. J Immunol 177(6):3746–3756

    Article  CAS  PubMed  Google Scholar 

  21. Adhikary D, Behrends U, Moosmann A, Witter K, Bornkamm GW, Mautner J (2006) Control of Epstein–Barr virus infection in vitro by T helper cells specific for virion glycoproteins. J Exp Med 203(4):995–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mautner J, Pich D, Nimmerjahn F, Milosevic S, Adhikary D, Christoph H, Witter K, Bornkamm GW, Hammerschmidt W, Behrends U (2004) Epstein–Barr virus nuclear antigen 1 evades direct immune recognition by CD4+ T helper cells. Eur J Immunol 34(9):2500–2509

    Article  CAS  PubMed  Google Scholar 

  23. Kwok H, Wu CW, Palser AL, Kellam P, Sham PC, Kwong DL, Chiang AK (2014) Genomic diversity of Epstein–Barr virus genomes isolated from primary nasopharyngeal carcinoma biopsy samples. J Virol 88(18):10662–10672. https://doi.org/10.1128/JVI.01665-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walker A, Skibbe K, Steinmann E, Pfaender S, Kuntzen T, Megger DA, Groten S, Sitek B, Lauer GM, Kim AY, Pietschmann T, Allen TM, Timm J (2015) Distinct escape pathway by hepatitis C virus genotype 1a from a dominant CD8+ T cell response by selection of altered epitope processing. J Virol 90(1):33–42. https://doi.org/10.1128/JVI.01993-15

    Article  PubMed  PubMed Central  Google Scholar 

  25. Steers NJ, Currier JR, Jobe O, Tovanabutra S, Ratto-Kim S, Marovich MA, Kim JH, Michael NL, Alving CR, Rao M (2014) Designing the epitope flanking regions for optimal generation of CTL epitopes. Vaccine 32(28):3509–3516. https://doi.org/10.1016/j.vaccine.2014.04.039

    Article  CAS  PubMed  Google Scholar 

  26. Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836. https://doi.org/10.1038/nri3084

    Article  CAS  PubMed  Google Scholar 

  27. Desai DV, Kulkarni-Kale U (2014) T-cell epitope prediction methods: an overview. Methods Mol Biol 1184:333–364. https://doi.org/10.1007/978-1-4939-1115-8_19

    Article  PubMed  Google Scholar 

  28. Rancan C, Schirrmann L, Huls C, Zeidler R, Moosmann A (2015) Latent membrane protein LMP2A impairs recognition of EBV-infected cells by CD8+ T Cells. PLoS Pathog 11(6):e1004906. https://doi.org/10.1371/journal.ppat.1004906

    Article  PubMed  PubMed Central  Google Scholar 

  29. Holland CJ, Cole DK, Godkin A (2013) Re-directing CD4(+) T cell responses with the flanking residues of MHC class II-bound peptides: the core is not enough. Front Immunol 4:172. https://doi.org/10.3389/fimmu.2013.00172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ossendorp F, Eggers M, Neisig A, Ruppert T, Groettrup M, Sijts A, Mengede E, Kloetzel PM, Neefjes J, Koszinowski U, Melief C (1996) A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity 5(2):115–124

    Article  CAS  PubMed  Google Scholar 

  31. Hastings KT (2013) GILT: shaping the MHC class II-restricted peptidome and CD4(+) T cell-mediated immunity. Front Immunol 4:429. https://doi.org/10.3389/fimmu.2013.00429

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J (2015) T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 33:169–200. https://doi.org/10.1146/annurev-immunol-032414-112334

    Article  CAS  PubMed  Google Scholar 

  33. Neefjes J, Ovaa H (2013) A peptide’s perspective on antigen presentation to the immune system. Nat Chem Biol 9(12):769–775. https://doi.org/10.1038/nchembio.1391

    Article  CAS  PubMed  Google Scholar 

  34. Cole DK, Gallagher K, Lemercier B, Holland CJ, Junaid S, Hindley JP, Wynn KK, Gostick E, Sewell AK, Gallimore AM, Ladell K, Price DA, Gougeon ML, Godkin A (2012) Modification of the carboxy-terminal flanking region of a universal influenza epitope alters CD4(+) T-cell repertoire selection. Nat Commun 3:665. https://doi.org/10.1038/ncomms1665

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tischer S, Dieks D, Sukdolak C, Bunse C, Figueiredo C, Immenschuh S, Borchers S, Stripecke R, Maecker-Kolhoff B, Blasczyk R, Eiz-Vesper B (2014) Evaluation of suitable target antigens and immunoassays for high-accuracy immune monitoring of cytomegalovirus and Epstein–Barr virus-specific T cells as targets of interest in immunotherapeutic approaches. J Immunol Methods 408:101–113. https://doi.org/10.1016/j.jim.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  36. Korber N, Behrends U, Hapfelmeier A, Protzer U, Bauer T (2016) Validation of an IFNgamma/IL2 FluoroSpot assay for clinical trial monitoring. J Transl Med 14(1):175. https://doi.org/10.1186/s12967-016-0932-7

    Article  PubMed  PubMed Central  Google Scholar 

  37. Taylor GS, Steven NM (2016) Therapeutic vaccination strategies to treat nasopharyngeal carcinoma. Chin Clin Oncol 5(2):23. https://doi.org/10.21037/cco.2016.03.20

    Article  PubMed  Google Scholar 

  38. Smith C, Khanna R (2015) The Development of prophylactic and therapeutic EBV vaccines. Curr Top Microbiol Immunol 391:455–473. https://doi.org/10.1007/978-3-319-22834-1_16

    CAS  PubMed  Google Scholar 

  39. Cohen JI (2015) Epstein–barr virus vaccines. Clin Transl Immunol 4(1):e32. https://doi.org/10.1038/cti.2014.27

    Article  Google Scholar 

  40. Bollard CM, Heslop HE (2016) T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood 127(26):3331–3340. https://doi.org/10.1182/blood-2016-01-628982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P, Burns D, McAulay K, Turner M, Bellamy C, Amlot PL, Kelly D, MacGilchrist A, Gandhi MK, Swerdlow AJ, Crawford DH (2007) Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110(4):1123–1131. https://doi.org/10.1182/blood-2006-12-063008

    Article  CAS  PubMed  Google Scholar 

  42. O’Reilly RJ, Prockop S, Hasan AN, Koehne G, Doubrovina E (2016) Virus-specific T-cell banks for ‘off the shelf’ adoptive therapy of refractory infections. Bone Marrow Transpl 51(9):1163–1172. https://doi.org/10.1038/bmt.2016.17

    Article  Google Scholar 

  43. Bollard CM (2013) Improving T-cell therapy for Epstein–Barr virus lymphoproliferative disorders. J Clin Oncol 31(1):5–7. https://doi.org/10.1200/JCO.2012.43.5784

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The excellent technical support by Grit Müller-Neumann and Dorothea Seubert is greatly appreciated.

Funding

This study was supported by the German Center for Infection Research - DZIF (TTU 07.804). A. Cirac was supported by the Technische Universität München (TUM) Graduate School.

Author information

Authors and Affiliations

Authors

Contributions

U. Behrends and J. Mautner conceived and designed the study. A. Cirac, S. Stützle, M. Dieckmeyer, and D. Adhikary contributed to the acquisition, analysis, and interpretation of data. A. Cirac and M. Dieckmeyer performed the statistical analysis. A. Moosmann, N. Körber, T. Bauer, K. Witter, and H-J. Delecluse provided essential reagents and technical and material support. A. Cirac, U. Behrends and J. Mautner wrote the paper and all authors made substantial contributions to data analysis and interpretation, manuscript editing, review and approval.

Corresponding author

Correspondence to Josef Mautner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study. All procedures involving human participants were in accordance with the ethical standards of the institutional research committee of the Technische Universität München and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Josef Mautner and Uta Behrends are joint senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 591 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cirac, A., Stützle, S., Dieckmeyer, M. et al. Epstein–Barr virus strain heterogeneity impairs human T-cell immunity. Cancer Immunol Immunother 67, 663–674 (2018). https://doi.org/10.1007/s00262-018-2118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2118-z

Keywords

Navigation